0

Deflexão na Primavera Fórmulas

Maior cobertura de calculadoras e crescente - 30.000+ calculadoras! Calcular com uma unidade diferente para cada variável - Conversão de unidade embutida!
Coleção mais ampla de medidas e unidades - 250+ medições!

Sinta-se à vontade para COMPARTILHAR este documento com seus amigos!

Por favor, deixe seu feedback aqui...

Lista de 23 Deflexão na Primavera Fórmulas

Deflexão na Primavera ©

Mola Helicoidal Fechada

1) Carga aplicada na mola Deflexão dada axialmente para mola helicoidal fechada
$f \mathrm{fx} \mathrm{W}_{\text {load }}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~N} \cdot \mathrm{R}^{3}}$
Abrir Calculadora
ex $85 \mathrm{~N}=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{~mm}^{4}}{64 \cdot 9 \cdot(225 \mathrm{~mm})^{3}}$
2) Deflexão para Mola Helicoidal Fechada
$f \mathbf{x} \delta=\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}$
Abrir Calculadora
ex $3.4 \mathrm{~mm}=\frac{64 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}$
3) Diâmetro do fio ou bobina da mola devido à deflexão para mola helicoidal fechada
$f \mathbf{x} d=\left(\frac{64 \cdot W_{\text {load }} \cdot R^{3} \cdot N}{G_{\text {Torsion }} \cdot \delta}\right)^{\frac{1}{4}}$
Abrir Calculadora
$\operatorname{ex} 45 \mathrm{~mm}=\left(\frac{64 \cdot 85 \mathrm{~N} \cdot 225 \mathrm{~mm}^{3} \cdot 9}{40 \mathrm{GPa} \cdot 3.4 \mathrm{~mm}}\right)^{\frac{1}{4}}$
4) Módulo de rigidez dada a deflexão para mola helicoidal enrolada
$f \times \mathrm{G}_{\text {Torsion }}=\frac{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{~d}^{4}}$
Abrir Calculadora
ex $40 \mathrm{GPa}=\frac{64 \cdot 85 \mathrm{~N} \cdot 225 \mathrm{~mm}^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot 45 \mathrm{~mm}^{4}}$
5) Número de bobinas de mola com deflexão para mola helicoidal estreita E
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{N}}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3}}$
Abrir Calculadora
ex $9=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{64 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3}}$
6) Raio médio da mola dada a deflexão para mola helicoidal fechada
$\mathrm{fx} R=\left(\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{64 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{N}}\right)^{\frac{1}{3}}$
Abrir Calculadora
ex $225 \mathrm{~mm}=\left(\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot 45 \mathrm{~mm}^{4}}{64 \cdot 85 \mathrm{~N} \cdot 9}\right)^{\frac{1}{3}}$
Mola de Fio de Seção Quadrada
7) Carga dada Deflexão da Mola de Arame de Seção Quadrada
$f \mathrm{f} \mathrm{W}_{\text {load }}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}$
Abrir Calculadora [
$\operatorname{ex} 121.7002 \mathrm{~N}=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 9}$
8) Deflexão da Mola de Arame de Seção Quadrada
$\mathrm{fx} \delta=\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}$
Abrir Calculadora
$2.374688 \mathrm{~mm}=\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}$
9) Largura dada deflexão da mola de arame de seção quadrada
$f \mathrm{x} d=\left(\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{G}_{\text {Torsion }}}\right)^{\frac{1}{4}}$
Abrir Calculadora
ex $41.13812 \mathrm{~mm}=\left(\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa}}\right)^{\frac{1}{4}}$
10) Módulo de rigidez usando deflexão de mola de arame de seção quadrada
$f \times G_{\text {Torsion }}=\frac{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{R}^{3} \cdot \mathrm{~N}}{\delta \cdot \mathrm{~d}^{4}}$
Abrir Calculadora
ex $27.9375 \mathrm{GPa}=\frac{44.7 \cdot 85 \mathrm{~N} \cdot(225 \mathrm{~mm})^{3} \cdot 9}{3.4 \mathrm{~mm} \cdot(45 \mathrm{~mm})^{4}}$
11) Número de bobinas dada a deflexão da mola de arame de seção quadrada
$\mathrm{fx}=\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{R}^{3} \cdot \mathrm{~W}_{\mathrm{load}}}$
Abrir Calculadora $\sqrt{5}$
ex $12.88591=\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot(225 \mathrm{~mm})^{3} \cdot 85 \mathrm{~N}}$
12) Raio médio dado a deflexão da mola de arame de seção quadrada
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}=\left(\frac{\delta \cdot \mathrm{G}_{\text {Torsion }} \cdot \mathrm{d}^{4}}{44.7 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{N}}\right)^{\frac{1}{3}}$

Abrir Calculadora

ex $253.5946 \mathrm{~mm}=\left(\frac{3.4 \mathrm{~mm} \cdot 40 \mathrm{GPa} \cdot(45 \mathrm{~mm})^{4}}{44.7 \cdot 85 \mathrm{~N} \cdot 9}\right)^{\frac{1}{3}}$

Molas de folhas

13) Comprimento dado a deflexão na mola da folha
$\mathrm{fx} L=\sqrt{\frac{8 \cdot \delta \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{M}}}$

Abrir Calculadora

ex $3590.935 \mathrm{~mm}=\sqrt{\frac{8 \cdot 3.4 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{67.5 \mathrm{kN}^{*} \mathrm{~m}}}$
14) Deflexão na Primavera de Folha dado Momento
$f \mathbf{x} \delta=\left(\frac{\mathrm{M} \cdot \mathrm{L}^{2}}{8 \cdot \mathrm{E} \cdot \mathrm{I}}\right)$
Abrir Calculadora
ex $4.584964 \mathrm{~mm}=\left(\frac{67.5 \mathrm{kN} * \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}\right)$
15) Módulo de elasticidade dada a deflexão na mola e no momento da folha
$f_{\mathrm{x}} \mathrm{E}=\frac{\mathrm{M} \cdot \mathrm{L}^{2}}{8 \cdot \delta \cdot \mathrm{I}}$
Abrir Calculadora
ex $26970.38 \mathrm{MPa}=\frac{67.5 \mathrm{kN}^{*} \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 3.4 \mathrm{~mm} \cdot 0.0016 \mathrm{~m}^{4}}$
16) Momento dado deflexão na folha da mola
$\mathrm{fx} \mathrm{M}=\frac{8 \cdot \delta \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{L}^{2}}$
Abrir Calculadora
ex $50.05492 \mathrm{kN}^{*} \mathrm{~m}=\frac{8 \cdot 3.4 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 0.0016 \mathrm{~m}^{4}}{(4170 \mathrm{~mm})^{2}}$
17) Momento de inércia devido à deflexão na mola da folha
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}=\frac{\mathrm{M} \cdot \mathrm{L}^{2}}{8 \cdot \mathrm{E} \cdot \delta}$
Abrir Calculadora
ex $0.002158 \mathrm{~m}^{4}=\frac{67.5 \mathrm{kN}{ }^{*} \mathrm{~m} \cdot(4170 \mathrm{~mm})^{2}}{8 \cdot 20000 \mathrm{MPa} \cdot 3.4 \mathrm{~mm}}$

Para feixe carregado centralmente

18) Carga dada deflexão em Leaf Spring
$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{load}}=\frac{8 \cdot \delta_{\mathrm{Leaf}} \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}{3 \cdot \mathrm{~L}^{3}}$
Abrir Calculadora
ex $84.87939 \mathrm{~N}=\frac{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}{3 \cdot(4170 \mathrm{~mm})^{3}}$
19) Deflexão na mola de lâmina dada a carga
$f \mathbf{x} \delta_{\mathrm{Leaf}}=\frac{3 \cdot \mathrm{~W}_{\mathrm{load}} \cdot \mathrm{L}^{3}}{8 \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Abrir Calculadora
$3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}$
$\overline{8 \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$
20) Espessura dada Deflexão na Mola
$f_{x} t=\left(\frac{3 \cdot W_{\text {load }} \cdot L^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot E \cdot n \cdot b}\right)^{\frac{1}{3}}$
Abrir Calculadora
ex $460.2178 \mathrm{~mm}=\left(\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot 300 \mathrm{~mm}}\right)^{\frac{1}{3}}$
21) Largura dada Deflexão na Folha de Mola
$f \mathrm{x}=\frac{3 \cdot W_{\text {load }} \cdot L^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot \mathrm{E} \cdot \mathrm{n} \cdot \mathrm{t}^{3}}$
Abrir Calculadora
ex $300.4263 \mathrm{~mm}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 8 \cdot(460 \mathrm{~mm})^{3}}$
22) Módulo de elasticidade na mola de folhas dada a deflexão
$f \times \mathrm{E}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\mathrm{Leaf}} \cdot \mathrm{n} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Abrir Calculadora
ex $20028.42 \mathrm{MPa}=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 8 \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$
23) Número de placas com Deflexão na Folha de Mola
$\mathrm{fx}_{\mathrm{x}} \mathrm{n}=\frac{3 \cdot \mathrm{~W}_{\text {load }} \cdot \mathrm{L}^{3}}{8 \cdot \delta_{\text {Leaf }} \cdot \mathrm{E} \cdot \mathrm{b} \cdot \mathrm{t}^{3}}$
Abrir Calculadora
ex $8.011368=\frac{3 \cdot 85 \mathrm{~N} \cdot(4170 \mathrm{~mm})^{3}}{8 \cdot 494 \mathrm{~mm} \cdot 20000 \mathrm{MPa} \cdot 300 \mathrm{~mm} \cdot(460 \mathrm{~mm})^{3}}$

Variáveis Usadas

- b Largura da seção transversal (Milímetro)
- d Diâmetro da Primavera (Milímetro)
- E Módulo de Young (Megapascal)
- GTorsion Módulo de Rigidez (Gigapascal)
- I Momento de Inércia da Área (Medidor ^ 4)
- L Comprimento na primavera (Milímetro)
- M Momento de flexão (Quilonewton medidor)
- \mathbf{n} Número de placas
- N Número de bobinas
- R Raio Médio (Milímetro)
- t Espessura da Seção (Milímetro)
- W load Carga de mola (Newton)
- $\bar{\delta}$ Deflexão da Primavera (Milímetro)
- $\overline{\text { Leaf }}$ Deflexão da Primavera de Folha (Milímetro)

Constantes, Funções, Medidas usadas

- Função: sqrt, sqrt(Number)

Square root function

- Medição: Comprimento in Milímetro (mm)

Comprimento Conversão de unidades $\sqrt{ }$

- Medição: Pressão in Gigapascal (GPa)

Pressão Conversão de unidades

- Medição: Força in Newton (N)

Força Conversão de unidades

- Medição: Momento de Força in Quilonewton medidor (kN*m)

Momento de Força Conversão de unidades $\sqrt{ }$

- Medição: Segundo Momento de Área in Medidor ${ }^{\wedge} 4\left(\mathrm{~m}^{4}\right)$ Segundo Momento de Área Conversão de unidades
- Medição: Estresse in Megapascal (MPa) Estresse Conversão de unidades

Verifique outras listas de fórmulas

- Deflexão na Primavera Fórmulas

Sinta-se à vontade para COMPARTILHAR este documento com seus amigos!

PDF Disponível em

English Spanish French German Russian Italian Portuguese Polish Dutch

