Zero Order followed by First Order Reaction Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 9 Zero Order followed by First Order Reaction Formulas

Zero Order followed by First Order Reaction ©

1) Initial Concentration of Reactant in Zero Order Reaction followed by First Order Reaction
$\mathrm{fx}_{\mathrm{A} 0}=\mathrm{C}_{\mathrm{A}}+\mathrm{k}_{0} \cdot \Delta \mathrm{t}$
Open Calculator
ex $80 \mathrm{~mol} / \mathrm{m}^{3}=44 \mathrm{~mol} / \mathrm{m}^{3}+12 \mathrm{~mol} / \mathrm{m}^{3}{ }^{*} \mathrm{~s} \cdot 3 \mathrm{~s}$
2) Initial Reactant Concentration by Intermediate Conc. for Zero Order followed by First Order Rxn
$f \mathbf{f x} \mathrm{C}_{\mathrm{A} 0}=\frac{\mathrm{C}_{\mathrm{R}}}{\frac{1}{\mathrm{~K}} \cdot\left(1-\exp \left(-\left(\mathrm{k}_{1} \cdot \Delta \mathrm{t}\right)\right)\right)}$
ex $84.10071 \mathrm{~mol} / \mathrm{m}^{3}=\frac{10 \mathrm{~mol} / \mathrm{m}^{3}}{\frac{1}{1.593 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}_{\mathrm{s}}} \cdot\left(1-\exp \left(-\left(0.07 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s} \cdot 3 \mathrm{~s}\right)\right)\right)}$
3) Initial Reactant Concentration using Intermediate Conc. for Zero Order followed by First Order Rxn
$\left.\left.f \mathbf{f x} \mathrm{C}_{\mathrm{a} 0}=\frac{\mathrm{C}_{\mathrm{R}}}{\frac{1}{\mathrm{~K}} \cdot(\exp (\mathrm{~K}} \quad-\mathrm{k}_{1} \cdot \Delta \mathrm{t}\right)-\exp \left(-\mathrm{k}_{1} \cdot \Delta \mathrm{t}\right)\right)$
ex
$5.015333 \mathrm{~mol} / \mathrm{m}^{3}=\frac{10 \mathrm{~mol} / \mathrm{m}^{3}}{\frac{1}{1.593 \mathrm{~mol} / \mathrm{m}^{3}{ }^{* \mathrm{~s}}}} \cdot\left(\exp \left(1.593 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}-0.07 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s} \cdot 3 \mathrm{~s}\right)-\exp \left(-0.07 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s} \cdot 3 \mathrm{~s}\right)\right)$
4) Intermediate Concentration for Zero Order followed by First Order with Greater Rxn Time
$f \mathrm{C} \mathrm{C}_{\mathrm{R}}=\frac{\mathrm{C}_{0}}{\mathrm{~K}} \cdot\left(\exp \left(\mathrm{~K}-\mathrm{k}_{1} \cdot \Delta \mathrm{t}^{\prime \prime}\right)-\exp \left(-\mathrm{k}_{1} \cdot \Delta \mathrm{t}^{\prime \prime}\right)\right)$
ex
$10.2968 \mathrm{~mol} / \mathrm{m}^{3}=\frac{5.5 \mathrm{~mol} / \mathrm{m}^{3}}{1.593 \mathrm{~mol} / \mathrm{m}^{3 *} \mathrm{~s}} \cdot\left(\exp \left(1.593 \mathrm{~mol} / \mathrm{m}^{3 *} \mathrm{~s}-0.07 \mathrm{~mol} / \mathrm{m}^{3 *} \mathrm{~s} \cdot 3.9 \mathrm{~s}\right)-\exp \left(-0.07 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s} \cdot 3.9 \mathrm{~s}\right.\right.$
5) Intermediate Concentration for Zero Order followed by First Order with Less Rxn Time
f. $\mathrm{C}_{\mathrm{R}}=\left(\frac{\mathrm{C}_{\mathrm{A} 0}}{\mathrm{~K}}\right) \cdot\left(1-\exp \left(-\left(\mathrm{k}_{1} \cdot \Delta \mathrm{t}^{\prime}\right)\right)\right)$
ex $9.483899 \mathrm{~mol} / \mathrm{m}^{3}=\left(\frac{80 \mathrm{~mol} / \mathrm{m}^{3}}{1.593 \mathrm{~mol} / \mathrm{m}^{3 *} \mathrm{~s}}\right) \cdot\left(1-\exp \left(-\left(0.07 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s} \cdot 2.99 \mathrm{~s}\right)\right)\right)$
6) Maximum Intermediate Concentration in Zero Order followed by First Order
$f_{x} \mathrm{C}_{\mathrm{R}, \max }=\left(\frac{\mathrm{C}_{\mathrm{A} 0} \cdot(1-\exp (-\mathrm{K}))}{\mathrm{K}}\right)$
ex $40.0093 \mathrm{~mol} / \mathrm{m}^{3}=\left(\frac{80 \mathrm{~mol} / \mathrm{m}^{3} \cdot\left(1-\exp \left(-1.593 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}\right)\right)}{1.593 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}}\right)$
7) Rate Constant of Zero Order Reaction in Zero Order Reaction followed by First Order Reaction
$f x \mathrm{k}_{0}=\frac{\mathrm{C}_{\mathrm{A} 0}-\mathrm{C}_{\mathrm{A}}}{\Delta \mathrm{t}}$
ex $12 \mathrm{~mol} / \mathrm{m}^{3 *} \mathrm{~s}=\frac{80 \mathrm{~mol} / \mathrm{m}^{3}-44 \mathrm{~mol} / \mathrm{m}^{3}}{3 \mathrm{~s}}$
8) Reactant Concentration of Zero Order Reaction followed by First Order Reaction
fx $\mathrm{C}_{\mathrm{A}}=\left(\mathrm{C}_{\mathrm{A} 0}-\left(\mathrm{k}_{0} \cdot \Delta \mathrm{t}\right)\right)$
ex $44 \mathrm{~mol} / \mathrm{m}^{3}=\left(80 \mathrm{~mol} / \mathrm{m}^{3}-\left(12 \mathrm{~mol} / \mathrm{m}^{3}{ }^{*} \mathrm{~s} \cdot 3 \mathrm{~s}\right)\right)$
9) Time at Max Intermediate in Zero Order followed by First Order Reaction
$\mathrm{fx} \tau_{\mathrm{R}, \text { max }}=\frac{\mathrm{C}_{\mathrm{A} 0}}{\mathrm{k}_{0}}$
ex $6.666667 \mathrm{~s}=\frac{80 \mathrm{~mol} / \mathrm{m}^{3}}{12 \mathrm{~mol} / \mathrm{m}^{3} \mathrm{~s}}$

Variables Used

- C_{0} Initial Conc. of Reactant for Intermediate Conc. (Mole per Cubic Meter)
- \mathbf{C}_{A} Reactant Concentration for Multiple Rxns (Mole per Cubic Meter)
- $\mathrm{C}_{\mathrm{a} 0}$ Initial Reactant Concentration using Intermediate (Mole per Cubic Meter)
- $\mathbf{C}_{\text {A0 }}$ Initial Concentration of Reactant for Series Rxn (Mole per Cubic Meter)
- $\mathbf{C}_{\mathbf{R}}$ Intermediate Concentration for Series Rxn (Mole per Cubic Meter)
- $\mathbf{C}_{\mathbf{R}, \text { max }}$ Maximum Intermediate Concentration (Mole per Cubic Meter)
- K Overall Rate of Reaction (Mole per Cubic Meter Second)
- $\mathbf{k}_{\mathbf{0}}$ Rate Constant for Zero Order Rxn (Mole per Cubic Meter Second)
- \mathbf{k}_{1} Rate Constant for 1st Order 2nd Step (Mole per Cubic Meter Second)
- $\Delta \mathbf{t}$ Time Interval (Second)
- $\Delta \mathbf{t}^{\prime}$ Time Interval for Less Reaction Time (Second)
- $\Delta \mathbf{t}$ " Time Interval for Greater Reaction Time (Second)
- $\mathbf{T}_{\mathbf{R}, \text { max }}$ Time at Maximum Intermediate Concentration (Second)

Constants, Functions, Measurements used

- Function: exp, $\exp ($ Number $)$

Exponential function

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Molar Concentration in Mole per Cubic Meter ($\mathrm{mol} / \mathrm{m}^{3}$)

Molar Concentration Unit Conversion

- Measurement: Reaction Rate in Mole per Cubic Meter Second ($\mathrm{mol} / \mathrm{m}^{3 *} \mathrm{~s}$)

Reaction Rate Unit Conversion

Check other formula lists

- Basics of Potpourri Reactions Formulas
- First Order followed by Zero Order Reaction Formulas
- Zero Order followed by First Order Reaction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

