Common Stage Amplifiers Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 26 Common Stage Amplifiers Formulas

Common Stage Amplifiers ©

1) Amplifier Bandwidth in Discrete-Circuit Amplifier
$f \times B W=f_{h}-f_{L}$
ex $0.25 \mathrm{~Hz}=100.50 \mathrm{~Hz}-100.25 \mathrm{~Hz}$
2) Bypass Capacitance of CS Amplifier
$\mathrm{fx} \mathrm{C}_{\mathrm{s}}=\frac{1}{\mathrm{f}_{\mathrm{tm}} \cdot \mathrm{R}_{\mathrm{sig}}}$
Open Calculator
ex $25.99935 \mu \mathrm{~F}=\frac{1}{30.77 \mathrm{~Hz} \cdot 1.25 \mathrm{k} \Omega}$
3) Collector Base Junction Resistance of CE Amplifier
$f x R_{c}=R_{\text {sig }} \cdot\left(1+g_{m} \cdot R_{L}\right)+R_{L}$
ex $11.68 \mathrm{k} \Omega=1.25 \mathrm{k} \Omega \cdot(1+4.8 \mathrm{mS} \cdot 1.49 \mathrm{k} \Omega)+1.49 \mathrm{k} \Omega$
4) Current Gain of CS Amplifier
fx $\mathrm{A}_{\mathrm{i}}=\frac{\mathrm{A}_{\mathrm{p}}}{\mathrm{A}_{\mathrm{v}}}$
ex $3.698397=\frac{3.691}{0.998}$
5) Drain Voltage through Method of Open-Circuit Time Constants to CS Amplifier
$f \mathrm{f} \mathrm{V}_{\mathrm{d}}=\mathrm{v}_{\mathrm{x}}+\mathrm{V}_{\mathrm{gs}}$
ex $15.32 \mathrm{~V}=11.32 \mathrm{~V}+4 \mathrm{~V}$
6) Effective High Frequency Time Constant of CE Amplifier \longleftarrow
$\mathrm{fx} \tau_{\mathrm{H}}=\mathrm{C}_{\mathrm{be}} \cdot \mathrm{R}_{\mathrm{sig}}+\left(\mathrm{C}_{\mathrm{cb}} \cdot\left(\mathrm{R}_{\mathrm{sig}} \cdot\left(1+\mathrm{g}_{\mathrm{m}} \cdot \mathrm{R}_{\mathrm{L}}\right)+\mathrm{R}_{\mathrm{L}}\right)\right)+\left(\mathrm{C}_{\mathrm{t}} \cdot \mathrm{R}_{\mathrm{L}}\right)$
7) Equivalent Signal Resistance of CS Amplifier
$f \mathbf{R} R_{\text {sig }}^{\prime}=\frac{1}{\left(\frac{1}{R_{\text {sig }}}+\frac{1}{R_{\text {out }}}\right)}$
ex $0.683466 \mathrm{k} \Omega=\frac{1}{\left(\frac{1}{1.25 \mathrm{k} \Omega}+\frac{1}{1.508 \mathrm{k} \Omega}\right)}$
8) Frequency of Zero Transmission of CS Amplifier
$f \mathrm{f} \mathrm{f}_{\mathrm{tm}}=\frac{1}{\mathrm{C}_{\mathrm{s}} \cdot R_{\mathrm{sig}}}$
ex $30.76923 \mathrm{~Hz}=\frac{1}{26 \mu \mathrm{~F} \cdot 1.25 \mathrm{k} \Omega}$
9) High-Frequency Band given Complex Frequency Variable
$f \times \sqrt{\frac{\left(1+\left(\frac{f_{3 d B}}{f_{t}}\right)\right) \cdot\left(1+\left(\frac{f_{3 d B}}{f_{o}}\right)\right)}{\left(1+\left(\frac{f_{3 d B}}{f_{p}}\right)\right) \cdot\left(1+\left(\frac{f_{3 d B}}{f_{p 2}}\right)\right)}}$
ex $12.19146 \mathrm{~dB}=\sqrt{\frac{\left(1+\left(\frac{50 \mathrm{~Hz}}{36.75 \mathrm{~Hz}}\right)\right) \cdot\left(1+\left(\frac{50 \mathrm{~Hz}}{0.112 \mathrm{~Hz}}\right)\right)}{\left(1+\left(\frac{50 \mathrm{~Hz}}{36.532 \mathrm{~Hz}}\right)\right) \cdot\left(1+\left(\frac{50 \mathrm{~Hz}}{25 \mathrm{~Hz}}\right)\right)}}$
10) High-Frequency Gain of CE Amplifier
$f_{\mathrm{x}} \mathrm{A}_{\mathrm{hf}}=\frac{\mathrm{f}_{\mathrm{u} 3 \mathrm{~dB}}}{2 \cdot \pi}$
ex $0.200058=\frac{1.257 \mathrm{~Hz}}{2 \cdot \pi}$
11) High-Frequency Response given Input Capacitance
$\mathrm{fx} \mathrm{A}_{\mathrm{hf}}=\frac{1}{2 \cdot \pi \cdot \mathrm{R}_{\text {sig }} \cdot \mathrm{C}_{\mathrm{i}}}$
ex $0.244257=\frac{1}{2 \cdot \pi \cdot 1.25 \mathrm{k} \Omega \cdot 521.27 \mu \mathrm{~F}}$
12) Input Capacitance in High-Frequency Gain of CE Amplifier
$f x C_{i}=C_{c b}+C_{b e} \cdot\left(1+\left(g_{m} \cdot R_{L}\right)\right)$
ex $520.104 \mu \mathrm{~F}=300 \mu \mathrm{~F}+27 \mu \mathrm{~F} \cdot(1+(4.8 \mathrm{mS} \cdot 1.49 \mathrm{k} \Omega))$
13) Input Resistance of CG Amplifier
$f \mathrm{fx} \mathrm{R}_{\mathrm{t}}=\frac{\mathrm{R}_{\text {in }}+\mathrm{R}_{\mathrm{L}}}{1+\left(\mathrm{g}_{\mathrm{m}} \cdot \mathrm{R}_{\text {in }}\right)}$
ex $0.478499 \mathrm{k} \Omega=\frac{0.78 \mathrm{k} \Omega+1.49 \mathrm{k} \Omega}{1+(4.8 \mathrm{mS} \cdot 0.78 \mathrm{k} \Omega)}$
14) Load Resistance of CG Amplifier
$f \times \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{t}} \cdot\left(1+\left(\mathrm{g}_{\mathrm{m}} \cdot \mathrm{R}_{\text {in }}\right)\right)-\mathrm{R}_{\text {in }}$
ex $1.49712 \mathrm{k} \Omega=0.480 \mathrm{k} \Omega \cdot(1+(4.8 \mathrm{mS} \cdot 0.78 \mathrm{k} \Omega))-0.78 \mathrm{k} \Omega$
15) Load Resistance of CS Amplifier
$f \mathrm{f} \mathrm{R}_{\mathrm{L}}=\left(\frac{\mathrm{V}_{\text {out }}}{\mathrm{g}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{gs}}}\right)$
ex $1.498958 \mathrm{k} \Omega=\left(\frac{28.78 \mathrm{~V}}{4.8 \mathrm{mS} \cdot 4 \mathrm{~V}}\right)$
16) Mid Band Gain of CE Amplifier
fx $\mathrm{A}_{\text {mid }}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {th }}}$
ex $32.01335=\frac{28.78 \mathrm{~V}}{0.899 \mathrm{~V}}$
17) Midband Gain of CS Amplifier
fx $\mathrm{A}_{\text {mid }}=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}^{\prime}{ }_{\text {sig }}}$
ex $32.01335=\frac{28.78 \mathrm{~V}}{0.899 \mathrm{~V}}$
18) Open Circuit Time Constant between Gate and Drain of Common Gate Amplifier
$f_{x} T_{o c}=\left(C_{t}+C_{g d}\right) \cdot R_{L}$
ex $0.006309 \mathrm{~s}=(2.889 \mu \mathrm{~F}+1.345 \mu \mathrm{~F}) \cdot 1.49 \mathrm{k} \Omega$
19) Open Circuit Time Constant in High Frequency Response of CG Amplifier
$f \mathrm{f} \mathrm{T}_{\mathrm{oc}}=\mathrm{C}_{\mathrm{gs}} \cdot\left(\frac{1}{\mathrm{R}_{\mathrm{sig}}}+\mathrm{g}_{\mathrm{m}}\right)+\left(\mathrm{C}_{\mathrm{t}}+\mathrm{C}_{\mathrm{gd}}\right) \cdot \mathrm{R}_{\mathrm{L}}$
ex $0.006309 \mathrm{~s}=2.6 \mu \mathrm{~F} \cdot\left(\frac{1}{1.25 \mathrm{k} \Omega}+4.8 \mathrm{mS}\right)+(2.889 \mu \mathrm{~F}+1.345 \mu \mathrm{~F}) \cdot 1.49 \mathrm{k} \Omega$
20) Output Voltage of CS Amplifier \subseteq
$f \mathrm{f} \mathrm{V}_{\text {out }}=\mathrm{g}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{gs}} \cdot \mathrm{R}_{\mathrm{L}}$
ex $28.608 \mathrm{~V}=4.8 \mathrm{mS} \cdot 4 \mathrm{~V} \cdot 1.49 \mathrm{k} \Omega$
21) Resistance between Gate and Drain in Open Circuit Time Constants Method of CS Amplifier
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\mathrm{t}}=\frac{\mathrm{v}_{\mathrm{x}}}{\mathrm{i}_{\mathrm{x}}}$
ex $0.386085 \mathrm{k} \Omega=\frac{11.32 \mathrm{~V}}{29.32 \mathrm{~mA}}$
22) Resistance between Gate and Source of CG Amplifier 〔
$f \in R_{t}=\frac{1}{\frac{1}{R_{\text {in }}}+\frac{1}{R_{\text {sig }}}}$
ex $0.480296 \mathrm{k} \Omega=\frac{1}{\frac{1}{0.78 \mathrm{k} \Omega}+\frac{1}{1.25 \mathrm{k} \Omega}}$
23) Second Pole-Frequency of CG Amplifier
$f \mathrm{f} \mathrm{f}_{\mathrm{p} 2}=\frac{1}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{L}} \cdot\left(\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\mathrm{t}}\right)}$
$25.22801 \mathrm{~Hz}=\frac{1}{2 \cdot \pi \cdot 1.49 \mathrm{k} \Omega \cdot(1.345 \mu \mathrm{~F}+2.889 \mu \mathrm{~F})}$
24) Source Voltage of CS Amplifier
$\mathrm{fx} \mathrm{V}_{\mathrm{gs}}=\mathrm{V}_{\mathrm{d}}-\mathrm{v}_{\mathrm{x}}$
ex $4 \mathrm{~V}=15.32 \mathrm{~V}-11.32 \mathrm{~V}$
25) Test Current in Open Circuit Time Constants Method of CS Amplifier
$f \mathrm{f} \mathrm{i}_{\mathrm{x}}=\mathrm{g}_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{gs}}+\frac{\mathrm{v}_{\mathrm{x}}+\mathrm{V}_{\mathrm{gs}}}{R_{\mathrm{L}}}$
ex $29.48188 \mathrm{~mA}=4.8 \mathrm{mS} \cdot 4 \mathrm{~V}+\frac{11.32 \mathrm{~V}+4 \mathrm{~V}}{1.49 \mathrm{k} \Omega}$
26) Upper 3dB Frequency of CE Amplifier
$f \mathrm{fx} \mathrm{f}_{\mathrm{u} 3 \mathrm{~dB}}=2 \cdot \pi \cdot \mathrm{~A}_{\mathrm{hf}}$
ex $1.256637 \mathrm{~Hz}=2 \cdot \pi \cdot 0.20$

Variables Used

- $\mathbf{A}_{\text {hf }}$ High Frequency Response
- $\mathbf{A}_{\mathbf{i}}$ Current Gain
- \mathbf{A}_{m} Amplifier Gain in Mid Band (Decibel)
- $\mathbf{A}_{\text {mid }}$ Mid Band Gain
- $\mathbf{A}_{\mathbf{p}}$ Power Gain
- $\mathbf{A}_{\mathbf{v}}$ Voltage Gain
- BW Amplifier Bandwidth (Hertz)
- C be $_{\text {be }}$ Base Emitter Capacitance (Microfarad)
- $\mathbf{C}_{\text {cb }}$ Collector Base Junction Capacitance (Microfarad)
- C_{gd} Gate to Drain Capacitance (Microfarad)
- C_{gs} Gate to Source Capacitance (Microfarad)
- $\mathbf{C}_{\mathbf{i}}$ Input Capacitance (Microfarad)
- $\mathbf{C}_{\mathbf{s}}$ Bypass Capacitor (Microfarad)
- C_{t} Capacitance (Microfarad)
- $\mathbf{f}_{3 \mathrm{~dB}} 3 \mathrm{~dB}$ Frequency (Hertz)
- $\mathbf{f}_{\mathbf{h}}$ High Frequency (Hertz)
- \mathbf{f}_{L} Low Frequency (Hertz)
- $\mathbf{f}_{\mathbf{o}}$ Frequency Observed (Hertz)
- $\mathbf{f}_{\mathbf{p}}$ Pole Frequency (Hertz)
- $\mathbf{f}_{\mathbf{p} 2}$ Second Pole Frequency (Hertz)
- $\mathbf{f}_{\mathbf{t}}$ Frequency (Hertz)
- \mathbf{f}_{tm} Transmission Frequency (Hertz)
- $\mathbf{f u}_{\mathbf{u} \mathbf{d B}}$ Upper 3-dB Frequency (Hertz)
- \mathbf{g}_{m} Transconductance (Millisiemens)
- $\mathbf{i}_{\mathbf{x}}$ Test Current (Milliampere)
- $\mathbf{R}_{\mathbf{c}}$ Collector Resistance (Kilohm)
- $\mathbf{R}_{\text {in }}$ Finite Input Resistance (Kilohm)
- \mathbf{R}_{L} Load Resistance (Kilohm)
- $\mathbf{R}_{\text {out }}$ Output Resistance (Kilohm)
- $\mathbf{R}_{\text {sig }}$ Signal Resistance (Kilohm)
- \mathbf{R}^{\prime} sig Internal Small Signal Resistance (Kilohm)
- $\mathbf{R}_{\mathbf{t}}$ Resistance (Kilohm)
- $\mathbf{T}_{\text {oc }}$ Open Circuit Time Constant (Second)
- $\mathbf{V}_{\mathbf{d}}$ Drain Voltage (Volt)
- $\mathbf{V}_{\mathbf{g s}}$ Gate to Source Voltage (Volt)
- V out Output Voltage (Volt)
- \mathbf{V}^{\prime} sig Small Signal Voltage (Volt)
- $\mathbf{V}_{\text {th }}$ Threshold Voltage (Volt)
- $\mathbf{V}_{\mathbf{x}}$ Test Voltage (Volt)
- τ_{H} Effective High Frequency Time Constant (Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Electric Current in Milliampere (mA)

Electric Current Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

- Measurement: Capacitance in Microfarad ($\mu \mathrm{F}$)

Capacitance Unit Conversion

- Measurement: Electric Resistance in Kilohm (k Ω)

Electric Resistance Unit Conversion

- Measurement: Electric Conductance in Millisiemens (mS)

Electric Conductance Unit Conversion

- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

- Measurement: Sound in Decibel (dB)

Sound Unit Conversion

Check other formula lists

- Common Stage Amplifiers Formulas
- Multi Stage Amplifiers Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

