

Common Stage Amplifiers Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 26 Common Stage Amplifiers Formulas

Common Stage Amplifiers

1) Amplifier Bandwidth in Discrete-Circuit Amplifier

fx
$$\mathrm{BW} = \mathrm{f_h} - \mathrm{f_L}$$

Open Calculator

$$= 0.25 \mathrm{Hz} = 100.50 \mathrm{Hz} - 100.25 \mathrm{Hz}$$

2) Bypass Capacitance of CS Amplifier 🖸

$$m C_s = rac{1}{f_{tm} \cdot R_{sig}}$$

Open Calculator 🗗

$$\boxed{\text{ex}} 25.99935 \mu F = \frac{1}{30.77 \text{Hz} \cdot 1.25 \text{k}\Omega}$$

3) Collector Base Junction Resistance of CE Amplifier

fx
$$m R_c = R_{sig} \cdot (1 + g_m \cdot R_L) + R_L$$

Open Calculator

ex
$$11.68 \mathrm{k}\Omega = 1.25 \mathrm{k}\Omega \cdot (1 + 4.8 \mathrm{mS} \cdot 1.49 \mathrm{k}\Omega) + 1.49 \mathrm{k}\Omega$$

4) Current Gain of CS Amplifier 🗹

$$A_{
m i}=rac{A_{
m p}}{A_{
m v}}$$

Open Calculator

$$\boxed{3.698397 = \frac{3.691}{0.998}}$$

5) Drain Voltage through Method of Open-Circuit Time Constants to CS Amplifier

fx
$$V_{
m d} = v_{
m x} + V_{
m gs}$$

Open Calculator 🚰

$$\begin{array}{|c|c|c|c|c|c|} \hline \textbf{ex} & 15.32 \text{V} = 11.32 \text{V} + 4 \text{V} \\ \hline \end{array}$$

6) Effective High Frequency Time Constant of CE Amplifier

Open Calculator

$$au_{
m H} = {
m C_{be}} \cdot {
m R_{sig}} + ({
m C_{cb}} \cdot ({
m R_{sig}} \cdot (1 + {
m g_m} \cdot {
m R_L}) + {
m R_L})) + ({
m C_t} \cdot {
m R_L})$$

open Galculator C

ex

$$3.542055s = 27\mu F \cdot 1.25k\Omega + (300\mu F \cdot (1.25k\Omega \cdot (1+4.8mS \cdot 1.49k\Omega) + 1.49k\Omega)) + (2.889\mu F \cdot 1.49k\Omega)$$

7) Equivalent Signal Resistance of CS Amplifier 🗗

$$ext{fx} ext{R'}_{ ext{sig}} = rac{1}{\left(rac{1}{ ext{R}_{ ext{sig}}} + rac{1}{ ext{R}_{ ext{out}}}
ight)}$$

Open Calculator 🗗

$$oxed{ex} \left[0.683466 \mathrm{k}\Omega = rac{1}{\left(rac{1}{1.25 \mathrm{k}\Omega} + rac{1}{1.508 \mathrm{k}\Omega}
ight)}
ight]$$

8) Frequency of Zero Transmission of CS Amplifier

$$\mathbf{f}_{\mathrm{tm}} = rac{1}{\mathrm{C_s \cdot R_{sig}}}$$

Open Calculator

$$oxed{ex} 30.76923 ext{Hz} = rac{1}{26 \mu ext{F} \cdot 1.25 ext{k}\Omega}$$

9) High-Frequency Band given Complex Frequency Variable

$$\boxed{\textbf{A}_m = \sqrt{\frac{\left(1 + \left(\frac{f_{3dB}}{f_t}\right)\right) \cdot \left(1 + \left(\frac{f_{3dB}}{f_o}\right)\right)}{\left(1 + \left(\frac{f_{3dB}}{f_p}\right)\right) \cdot \left(1 + \left(\frac{f_{3dB}}{f_{p2}}\right)\right)}}}$$

Open Calculator

ex
$$12.19146 dB = \sqrt{\frac{\left(1 + \left(\frac{50 Hz}{36.75 Hz}\right)\right) \cdot \left(1 + \left(\frac{50 Hz}{0.112 Hz}\right)\right)}{\left(1 + \left(\frac{50 Hz}{36.532 Hz}\right)\right) \cdot \left(1 + \left(\frac{50 Hz}{25 Hz}\right)\right)}}$$

10) High-Frequency Gain of CE Amplifier 🚰

$$\mathbf{A}_{
m hf} = rac{\mathrm{f}_{
m u3dB}}{2 \cdot \pi}$$

Open Calculator

$$\boxed{0.200058 = \frac{1.257 \mathrm{Hz}}{2 \cdot \pi}}$$

11) High-Frequency Response given Input Capacitance

$$\mathbf{A}_{\mathrm{hf}} = rac{1}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{sig}} \cdot \mathrm{C_{i}}}$$

$$oxed{ex} 0.244257 = rac{1}{2 \cdot \pi \cdot 1.25 \mathrm{k}\Omega \cdot 521.27 \mu \mathrm{F}}$$

12) Input Capacitance in High-Frequency Gain of CE Amplifier

 $\left[\mathrm{C_{i}} = \mathrm{C_{cb}} + \mathrm{C_{be}} \cdot \left(1 + \left(\mathrm{g_{m}} \cdot \mathrm{R_{L}}
ight)
ight]$

Open Calculator 🗗

 $\label{eq:exp} \boxed{520.104 \mu F = 300 \mu F + 27 \mu F \cdot (1 + (4.8 mS \cdot 1.49 k\Omega))}$

13) Input Resistance of CG Amplifier

 $R_{t} = rac{R_{in} + R_{L}}{1 + (g_{m} \cdot R_{in})}$

Open Calculator

14) Load Resistance of CG Amplifier

fx $R_L = R_t \cdot (1 + (g_m \cdot R_{in})) - R_{in}$

Open Calculator

 $\mathbf{ex} \ 1.49712 \mathrm{k}\Omega = 0.480 \mathrm{k}\Omega \cdot (1 + (4.8 \mathrm{mS} \cdot 0.78 \mathrm{k}\Omega)) - 0.78 \mathrm{k}\Omega$

15) Load Resistance of CS Amplifier

 $R_{L} = \left(rac{V_{out}}{g_{m} \cdot V_{gs}}
ight)$

Open Calculator

$oxed{ex} \left[1.498958 \mathrm{k}\Omega = \left(rac{28.78 \mathrm{V}}{4.8 \mathrm{mS} \cdot 4 \mathrm{V}} ight) ight]$

16) Mid Band Gain of CE Amplifier 🖒

 $A_{
m mid} = rac{V_{
m out}}{V_{
m th}}$

Open Calculator

17) Midband Gain of CS Amplifier 🖸

 $\mathbf{K} \mathbf{A}_{\mathrm{mid}} = rac{V_{\mathrm{out}}}{V'_{\mathrm{sig}}}$

Open Calculator

18) Open Circuit Time Constant between Gate and Drain of Common Gate Amplifier 🗗

fx $T_{
m oc} = (C_{
m t} + C_{
m gd}) \cdot R_{
m L}$

Open Calculator 🗗

 $\mathbf{ex} \ 0.006309 \mathrm{s} = (2.889 \mu \mathrm{F} + 1.345 \mu \mathrm{F}) \cdot 1.49 \mathrm{k}\Omega$

19) Open Circuit Time Constant in High Frequency Response of CG Amplifier

 $ag{T_{
m oc} = C_{
m gs} \cdot \left(rac{1}{R_{
m sig}} + g_{
m m}
ight) + (C_{
m t} + C_{
m gd}) \cdot R_{
m L}}$

Open Calculator

 $(R_{sig}) = 0.006309s = 2.6 \mu F \cdot \left(\frac{1}{1.25 k \Omega} + 4.8 mS\right) + (2.889 \mu F + 1.345 \mu F) \cdot 1.49 k \Omega$

20) Output Voltage of CS Amplifier

fx $V_{out} = g_{m} \cdot V_{gs} \cdot R_{L}$

Open Calculator

 $= 28.608 V = 4.8 mS \cdot 4 V \cdot 1.49 k\Omega$

21) Resistance between Gate and Drain in Open Circuit Time Constants Method of CS Amplifier

 $\mathbf{K} \mathbf{R}_{\mathrm{t}} = rac{\mathbf{v}_{\mathrm{x}}}{\mathbf{i}_{\mathrm{x}}}$

Open Calculator

 $oxed{ex} 0.386085 \mathrm{k}\Omega = rac{11.32 \mathrm{V}}{29.32 \mathrm{mA}}$

22) Resistance between Gate and Source of CG Amplifier

 $m R_t = rac{1}{rac{1}{R_{
m in}} + rac{1}{R_{
m sig}}}$

Open Calculator

23) Second Pole-Frequency of CG Amplifier

$$\mathbf{f}_{\mathrm{p2}} = rac{1}{2 \cdot \pi \cdot \mathrm{R_L} \cdot (\mathrm{C_{gd}} + \mathrm{C_t})}$$

Open Calculator

ex
$$25.22801 ext{Hz} = rac{1}{2 \cdot \pi \cdot 1.49 ext{k}\Omega \cdot (1.345 \mu ext{F} + 2.889 \mu ext{F})}$$

24) Source Voltage of CS Amplifier

fx $V_{
m gs} = V_{
m d} - v_{
m x}$

Open Calculator

- $\boxed{ \text{ex} \; 4 \text{V} = 15.32 \text{V} 11.32 \text{V} }$
- 25) Test Current in Open Circuit Time Constants Method of CS Amplifier
- $\mathbf{f}\mathbf{z}egin{aligned} \mathbf{f}\mathbf{z} & \mathbf{g}_{\mathrm{m}}\cdot\mathbf{V}_{\mathrm{gs}} + rac{v_{\mathrm{x}}+V_{\mathrm{gs}}}{R_{\mathrm{L}}} \end{aligned}$

Open Calculator

- $extbf{ex} 29.48188 ext{mA} = 4.8 ext{mS} \cdot 4 ext{V} + rac{11.32 ext{V} + 4 ext{V}}{1.49 ext{k} \Omega}$
- 26) Upper 3dB Frequency of CE Amplifier
- fx $f_{
 m u3dB} = 2 \cdot \pi \cdot A_{
 m hf}$

Open Calculator

 $\texttt{ex} \ 1.256637 \text{Hz} = 2 \cdot \pi \cdot 0.20$

Variables Used

- A_{hf} High Frequency Response
- Ai Current Gain
- Am Amplifier Gain in Mid Band (Decibel)
- · Amid Mid Band Gain
- Ap Power Gain
- A_v Voltage Gain
- **BW** Amplifier Bandwidth (Hertz)
- C_{be} Base Emitter Capacitance (Microfarad)
- C_{cb} Collector Base Junction Capacitance (Microfarad)
- C_{qd} Gate to Drain Capacitance (Microfarad)
- C_{qs} Gate to Source Capacitance (Microfarad)
- C_i Input Capacitance (Microfarad)
- C_S Bypass Capacitor (Microfarad)
- Ct Capacitance (Microfarad)
- f_{3dB} 3 dB Frequency (Hertz)
- **f**_h High Frequency (Hertz)
- f_I Low Frequency (Hertz)
- fo Frequency Observed (Hertz)
- fp Pole Frequency (Hertz)
- f_{p2} Second Pole Frequency (Hertz)
- f_t Frequency (Hertz)
- f_{tm} Transmission Frequency (Hertz)
- **f**_{u3dB} Upper 3-dB Frequency (*Hertz*)
- g_m Transconductance (Millisiemens)
- i_x Test Current (Milliampere)
- R_c Collector Resistance (Kilohm)
- R_{in} Finite Input Resistance (Kilohm)
- RI Load Resistance (Kilohm)
- Rout Output Resistance (Kilohm)
- R_{siq} Signal Resistance (Kilohm)

- R'sig Internal Small Signal Resistance (Kilohm)
- R_t Resistance (Kilohm)
- Toc Open Circuit Time Constant (Second)
- V_d Drain Voltage (Volt)
- V_{qs} Gate to Source Voltage (Volt)
- Vout Output Voltage (Volt)
- V'siq Small Signal Voltage (Volt)
- V_{th} Threshold Voltage (Volt)
- V_X Test Voltage (Volt)
- $au_{
 m H}$ Effective High Frequency Time Constant (Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Electric Current in Milliampere (mA)

 Electric Current Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Capacitance in Microfarad (μF)
 Capacitance Unit Conversion
- Measurement: Electric Resistance in Kilohm (kΩ)
 Electric Resistance Unit Conversion
- Measurement: Electric Conductance in Millisiemens (mS)

 Electric Conductance Unit Conversion
- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Sound in Decibel (dB)

 Sound Unit Conversion

Check other formula lists

- Common Stage Amplifiers Formulas
- Multi Stage Amplifiers Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

12/17/2023 | 1:24:17 PM UTC

Please leave your feedback here...

