
calculatoratoz.com

unitsconverters.com

Stopping Sight Distance Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Stopping Sight Distance Formulas

Stopping Sight Distance ©

1) Braking Distance given Lag Distance and Stopping Sight Distance
$\mathrm{fx}_{\mathrm{x}} \mathrm{l}=\mathrm{SSD}-\mathrm{LD}$
Open Calculator
ex $26.7 \mathrm{~m}=61.4 \mathrm{~m}-34.7 \mathrm{~m}$
2) Braking Distance of Vehicle during Braking Operation
$f \mathbf{f x}=\frac{\mathrm{v}_{\text {vehicle }}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f}}$
ex $203.1613 \mathrm{~m}=\frac{(28.23 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.2}$
3) Kinetic Energy of Vehicle at Design Speed
$\mathrm{fx} \mathrm{K} . \mathrm{E}=\frac{\mathrm{W} \cdot \mathrm{v}_{\text {vehicle }}^{2}}{2 \cdot[\mathrm{~g}]}$
Open Calculator
ex $9345.422 \mathrm{~J}=\frac{230 \mathrm{~kg} \cdot(28.23 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}]}$
4) Lag Distance given Stopping Sight Distance and Braking Distance
$f_{\mathrm{x}} \mathrm{LD}=\mathrm{SSD}-1$
ex $13.4 \mathrm{~m}=61.4 \mathrm{~m}-48 \mathrm{~m}$
5) Maximum Frictional Force Developed during Braking Operation of Vehicle
$\mathrm{fx} \mathrm{F}=\frac{\mathrm{W} \cdot \mathrm{v}_{\text {vehicle }}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{l}}$
$194.6963 \mathrm{~N}=\frac{230 \mathrm{~kg} \cdot(28.23 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 48 \mathrm{~m}}$
6) Maximum Frictional Force given Kinetic Energy of Vehicle at Design Speed
$f_{x} F=\frac{K . E}{l}$
ex $25 \mathrm{~N}=\frac{1200 \mathrm{~J}}{48 \mathrm{~m}}$

Open Calculator

7）Reaction Time given Stopping Sight Distance and Vehicle Velocity

ex $7.170507 \mathrm{~s}=\frac{61.4 \mathrm{~m}-\frac{(6.88 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot \mathrm{~g} \cdot 0.2}}{6.88 \mathrm{~m} / \mathrm{s}}$
8）Stopping Sight Distance given Lag Distance and Braking Distance
fx $\mathrm{SSD}=\mathrm{LD}+1$
Open Calculator
ex $82.7 \mathrm{~m}=34.7 \mathrm{~m}+48 \mathrm{~m}$

9）Stopping Sight Distance given Vehicle Velocity and Reaction Time of Vehicle
$f \times \mathrm{SSD}=\mathrm{V}_{\text {speed }} \cdot \mathrm{t}_{\text {reaction }}+\frac{\mathrm{V}_{\text {speed }}^{2}}{2 \cdot[\mathrm{~g}] \cdot \mathrm{f}}$
ex $80.86691 \mathrm{~m}=6.88 \mathrm{~m} / \mathrm{s} \cdot 10 \mathrm{~s}+\frac{(6.88 \mathrm{~m} / \mathrm{s})^{2}}{2 \cdot[\mathrm{~g}] \cdot 0.2}$
10）Velocity of Vehicle given Braking Distance after Braking Operation $工$
$f \mathrm{f} \quad \mathrm{v}_{\text {vehicle }}=\sqrt{2 \cdot[\mathrm{~g}] \cdot \mathrm{f} \cdot 1}$
ex $13.7218 \mathrm{~m} / \mathrm{s}=\sqrt{2 \cdot[\mathrm{~g}] \cdot 0.2 \cdot 48 \mathrm{~m}}$
11) Weight of Vehicle given Kinetic Energy of Vehicle at Design Speed

$$
\mathrm{fx}_{\mathrm{x}}^{\mathrm{W}}=\frac{2 \cdot[\mathrm{~g}] \cdot \mathrm{F} \cdot 1}{\mathrm{v}_{\text {vehicle }}^{2}}
$$

$$
\text { ex } 275.2492 \mathrm{~kg}=\frac{2 \cdot[\mathrm{~g}] \cdot 233 \mathrm{~N} \cdot 48 \mathrm{~m}}{(28.23 \mathrm{~m} / \mathrm{s})^{2}}
$$

12) Work Done against Friction in Stopping Vehicle
$f \mathrm{f} \quad \mathrm{W}_{\text {vehicle }}=\mathrm{f} \cdot \mathrm{W} \cdot \mathrm{l}$
ex $2208 \mathrm{~J}=0.2 \cdot 230 \mathrm{~kg} \cdot 48 \mathrm{~m}$

Variables Used

- f Coefficient of Friction
- F Maximum Frictional Force (Newton)
- K.E Kinetic Energy of Vehicle at Design Speed (Joule)
- I Braking Distance (Meter)
- LD Lag Distance (Meter)
- SSD Sight Stopping Distance (Meter)
- $\mathbf{t}_{\text {reaction }}$ Reaction Time (Second)
- $V_{\text {speed }}$ Vehicle Speed (Meter per Second)
- $\mathbf{V}_{\text {vehicle }}$ Velocity (Meter per Second)
- W Total Weight of Vehicle (Kilogram)
- W vehicle Work done against Friction (Joule)

Constants, Functions, Measurements used

- Constant: [g], 9.80665 Meter/Second ${ }^{2}$

Gravitational acceleration on Earth

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Energy in Joule (J)

Energy Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

Check other formula lists

- Overtaking Sight Distance Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

