\square R

()

Discrete Time Signals Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Discrete Time Signals Formulas

Discrete Time Signals ©

1) Bilinear Transformation Frequency

$\mathrm{fx}_{\mathrm{x}} \mathrm{f}_{\mathrm{b}}=\frac{2 \cdot \pi \cdot \mathrm{f}_{\mathrm{c}}}{\tan \left(\pi \cdot \frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{e}}}\right)}$
ex $76.81935 \mathrm{~Hz}=\frac{2 \cdot \pi \cdot 4.52 \mathrm{~Hz}}{\tan \left(\pi \cdot \frac{4.52 \mathrm{~Hz}}{40.1 \mathrm{~Hz}}\right)}$
2) Cutoff Angular Frequency
$\mathrm{fx}_{\mathrm{x}} \omega_{\mathrm{co}}=\frac{\mathrm{M} \cdot \mathrm{f}_{\mathrm{ce}}}{\mathrm{W}_{\mathrm{ss}} \cdot \mathrm{K}}$
Open Calculator 〔
ex $0.96 \mathrm{rad} / \mathrm{s}=\frac{8 \cdot 2.52 \mathrm{~Hz}}{7 \cdot 3 \mathrm{~s}}$
3) Damping Coefficient of Second Order Transmittance
fx $\zeta_{o}=\left(\frac{1}{2}\right) \cdot \mathrm{R}_{\text {in }} \cdot \mathrm{C}_{\text {in }} \cdot \sqrt{\frac{\mathrm{K}_{\mathrm{f}} \cdot \mathrm{L}_{\mathrm{o}}}{\mathrm{W}_{\mathrm{ss}} \cdot \mathrm{C}_{\text {in }}}}$
ex $2.896851 \mathrm{Ns} / \mathrm{m}=\left(\frac{1}{2}\right) \cdot 4.51 \Omega \cdot 3.8 \mathrm{~F} \cdot \sqrt{\frac{0.76 \cdot 4 \mathrm{H}}{7 \cdot 3.8 \mathrm{~F}}}$
4) Fourier Transform of Rectangular Window
$\mathrm{fx}_{\mathrm{X}} \mathrm{W}_{\mathrm{rn}}=\frac{\sin \left(2 \cdot \pi \cdot \mathrm{~T}_{\mathrm{o}} \cdot \mathrm{f}_{\mathrm{inp}}\right)}{\pi \cdot \mathrm{f}_{\mathrm{inp}}}$
ex $0.037345=\frac{\sin (2 \cdot \pi \cdot 40 \cdot 5.01 \mathrm{~Hz})}{\pi \cdot 5.01 \mathrm{~Hz}}$
5) Frequency Dirac Comb Angle
$f \mathbf{f x} \theta=2 \cdot \pi \cdot \mathrm{f}_{\mathrm{inp}} \cdot \frac{1}{\mathrm{f}_{\mathrm{o}}}$

Open Calculator

ex $0.629575 \mathrm{rad}=2 \cdot \pi \cdot 5.01 \mathrm{~Hz} \cdot \frac{1}{50 \mathrm{~Hz}}$
6) Hamming Window
$\mathrm{fx} \mathrm{W}_{\mathrm{hm}}=0.54-0.46 \cdot \cos \left(\frac{2 \cdot \pi \cdot \mathrm{n}}{\mathrm{W}_{\mathrm{ss}}-1}\right)$
Open Calculator
ex $0.814263=0.54-0.46 \cdot \cos \left(\frac{2 \cdot \pi \cdot 2.11}{7-1}\right)$

7) Hanning Window

$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{hn}}=\frac{1}{2}-\left(\frac{1}{2}\right) \cdot \cos \left(\frac{2 \cdot \pi \cdot \mathrm{n}}{\mathrm{W}_{\mathrm{ss}}-1}\right)$
Open Calculator
$\operatorname{ex} 0.798112=\frac{1}{2}-\left(\frac{1}{2}\right) \cdot \cos \left(\frac{2 \cdot \pi \cdot 2.11}{7-1}\right)$
8) Initial Frequency of Dirac Comb Angle
$f \mathrm{f} \mathrm{f}_{\mathrm{o}}=\frac{2 \cdot \pi \cdot \mathrm{f}_{\text {inp }}}{\theta}$
ex $50.77219 \mathrm{~Hz}=\frac{2 \cdot \pi \cdot 5.01 \mathrm{~Hz}}{0.62 \mathrm{rad}}$
9) Inverse Transmittance Filtering
$\mathrm{fx}_{\mathrm{x}} \mathrm{K}_{\mathrm{n}}=\left(\sin c\left(\pi \cdot \frac{\mathrm{f}_{\mathrm{inp}}}{\mathrm{f}_{\mathrm{e}}}\right)\right)^{-1}$
ex $1.306905=\left(\sin c\left(\pi \cdot \frac{5.01 \mathrm{~Hz}}{40.1 \mathrm{~Hz}}\right)\right)^{-1}$
10) Maximal Variation of Cutoff Angular Frequency
$f \times M=\frac{\omega_{\mathrm{co}} \cdot W_{\mathrm{ss}} \cdot K}{f_{\mathrm{ce}}}$
$\mathrm{ex} 8=\frac{0.96 \mathrm{rad} / \mathrm{s} \cdot 7 \cdot 3 \mathrm{~s}}{2.52 \mathrm{~Hz}}$
11) Natural Angular Frequency of Second Order Transmittance Σ
$\boldsymbol{f x} \omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{K}_{\mathrm{f}} \cdot \mathrm{L}_{\mathrm{o}}}{\mathrm{W}_{\mathrm{ss}} \cdot \mathrm{C}_{\text {in }}}}$
ex $0.338062 \mathrm{rad} / \mathrm{s}=\sqrt{\frac{0.76 \cdot 4 \mathrm{H}}{7 \cdot 3.8 \mathrm{~F}}}$
12) Sampling Frequency of Bilinear
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{f}} \mathrm{e}=\frac{\pi \cdot \mathrm{f}_{\mathrm{c}}}{\arctan \left(\frac{2 \cdot \pi \cdot \mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{b}}}\right)}$
ex $40.09552 \mathrm{~Hz}=\frac{\pi \cdot 4.52 \mathrm{~Hz}}{\arctan \left(\frac{2 \cdot \pi \cdot 4.52 \mathrm{~Hz}}{76.81 \mathrm{~Hz}}\right)}$

13) Transmittance Filtering

$\mathbf{f x} \mathrm{K}_{\mathrm{f}}=\sin c\left(\pi \cdot\left(\frac{\mathrm{f}_{\mathrm{inp}}}{\mathrm{f}_{\mathrm{e}}}\right)\right)$
ex $0.765167=\sin c\left(\pi \cdot\left(\frac{5.01 \mathrm{~Hz}}{40.1 \mathrm{~Hz}}\right)\right)$

14) Triangular Window

fx

$$
\mathrm{W}_{\mathrm{tn}}=0.42-0.52 \cdot \cos \left(\frac{2 \cdot \pi \cdot \mathrm{n}}{\mathrm{~W}_{\mathrm{ss}}-1}\right)-0.08 \cdot \cos \left(\frac{4 \cdot \pi \cdot \mathrm{n}}{\mathrm{~W}_{\mathrm{ss}}-1}\right)
$$

ex

$$
0.753159=0.42-0.52 \cdot \cos \left(\frac{2 \cdot \pi \cdot 2.11}{7-1}\right)-0.08 \cdot \cos \left(\frac{4 \cdot \pi \cdot 2.11}{7-1}\right)
$$

Variables Used

- $\mathbf{C}_{i n}$ Initial Capacitance (Farad)
- $\mathbf{f}_{\mathbf{b}}$ Bilinear Frequency (Hertz)
- $\mathbf{f}_{\mathbf{c}}$ Distortion Frequency (Hertz)
- $\mathbf{f}_{\mathbf{c e}}$ Central Frequency (Hertz)
- $\mathbf{f}_{\mathbf{e}}$ Sampling Frequency (Hertz)
- $\mathbf{f i n p}_{\text {Input Periodic Frequency (Hertz) }}$
- $\mathbf{f}_{\mathbf{o}}$ Initial Frequency (Hertz)
- K Clock Count (Second)
- $\mathbf{K}_{\mathbf{f}}$ Transmittance Filtering
- $\mathbf{K}_{\mathbf{n}}$ Inverse Transmittance Filtering
- $\mathbf{L}_{\mathbf{o}}$ Input Inductance (Henry)
- M Maximal Variation
- \mathbf{n} Number of Samples
- $\mathbf{R}_{\text {in }}$ Input Resistance (Ohm)
- $\mathbf{T}_{\mathbf{0}}$ Unlimited Time Signal
- $\mathbf{W}_{\mathbf{h m}}$ Hamming Window
- $\mathbf{W}_{\text {hn }}$ Hanning Window
- $\mathbf{W}_{\text {rn }}$ Rectangular Window
- $\mathbf{W}_{\text {ss }}$ Sample Signal Window
- $\mathbf{W}_{\text {tn }}$ Triangular Window
- ζ_{0} Damping Coefficient (Newton Second per Meter)
- $\boldsymbol{\theta}$ Signal Angle (Radian)
- $\boldsymbol{\omega}_{\mathbf{c o}}$ Cutoff Angular Frequency (Radian per Second)
- $\boldsymbol{\omega}_{\mathbf{n}}$ Natural Angular Frequency (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: arctan, arctan(Number)

Inverse trigonometric tangent function

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: ctan, ctan(Angle)

Trigonometric cotangent function

- Function: sin, $\sin ($ Angle)

Trigonometric sine function

- Function: sinc, sinc(Number)

Sinc function (normalized)

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Angle in Radian (rad)

Angle Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion $\sqrt{\checkmark}$

- Measurement: Capacitance in Farad (F)

Capacitance Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Inductance in Henry (H)

Inductance Unit Conversion

- Measurement: Damping Coefficient in Newton Second per Meter (Ns/m) Damping Coefficient Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s) Angular Frequency Unit Conversion

Check other formula lists

- Continuous Time Signals Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

