
calculatoratoz.com

unitsconverters.com

Design of Retaining Walls Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Design of Retaining Walls Formulas

Design of Retaining Walls ©

Cantilever and Counterfort Retaining Walls $\mathbb{C B}$

1) Counterfort Shear Unit Stress on Horizontal Section
$\mathrm{fx} \mathrm{v}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{d}}$
Open Calculator
ex $3.136001 \mathrm{MPa}=\frac{8 \mathrm{MPa}}{5.1 \mathrm{~mm} \cdot 500.2 \mathrm{~m}}$
2) Horizontal Distance from Face of Wall to Main Steel
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{v}_{\mathrm{c}}}$
Open Calculator
ex $490.1961 \mathrm{~m}=\frac{8 \mathrm{MPa}}{5.1 \mathrm{~mm} \cdot 3.2 \mathrm{MPa}}$
3) Normal Shear Unit Stress on Horizontal Section
$f \mathrm{fx} \mathrm{V}_{\mathrm{o}}=\left(\mathrm{v}_{\mathrm{c}} \cdot \mathrm{t}_{\mathrm{c}} \cdot \mathrm{d}\right)$
Open Calculator
ex $8.163264 \mathrm{MPa}=(3.2 \mathrm{MPa} \cdot 5.1 \mathrm{~mm} \cdot 500.2 \mathrm{~m})$
4) Shear Force on Section

$$
\mathrm{F}_{\text {shear }}=\mathrm{V}_{1}+\left(\left(\frac{\mathrm{M}_{\mathrm{b}}}{\mathrm{~d}}\right) \cdot(\tan (\theta)+\tan (\Phi))\right)
$$

ex $3.6 \mathrm{E}^{\wedge} 11 \mathrm{~N}=500 \mathrm{~N}+\left(\left(\frac{53 \mathrm{~N}^{*} \mathrm{~m}}{500.2 \mathrm{~m}}\right) \cdot\left(\tan \left(180^{\circ}\right)+\tan \left(90^{\circ}\right)\right)\right)$
5) Shear Force on Section for Vertical Wall Face
$\mathbf{f x} \mathrm{F}_{\text {shear }}=\mathrm{V}_{1}+\left(\frac{\mathrm{M}_{\mathrm{b}}}{\mathrm{d}}\right) \cdot \tan (\theta)$
Open Calculator
ex $500 \mathrm{~N}=500 \mathrm{~N}+\left(\frac{53 \mathrm{~N}^{*} \mathrm{~m}}{500.2 \mathrm{~m}}\right) \cdot \tan \left(180^{\circ}\right)$
6) Thickness of Counterfort Shear Unit Stress on Horizontal Section
$\mathrm{fx} \mathrm{t}_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{c}} \cdot \mathrm{d}}$
Open Calculator
ex $4.998001 \mathrm{~mm}=\frac{8 \mathrm{MPa}}{3.2 \mathrm{MPa} \cdot 500.2 \mathrm{~m}}$

Earth Pressure and Stability

7）Height of Water above Bottom of Wall given Total Thrust from Water Retained behind Wall
$f \times H_{w}=\sqrt{2 \cdot \frac{\mathrm{~T}_{\mathrm{W}}}{\gamma_{\mathrm{w}}}}$
ex $1.806095 \mathrm{~m}=\sqrt{2 \cdot \frac{16 \mathrm{kN} / \mathrm{m}}{9.81 \mathrm{kN} / \mathrm{m}^{3}}}$
8）Total Thrust from Water Retained by Wall
$f \mathrm{f} \mathrm{T}_{\mathrm{W}}=\left(0.5 \cdot \gamma_{\mathrm{w}} \cdot\left(\mathrm{H}_{\mathrm{w}}\right)^{2}\right)$
Open Calculator
ex $15.8922 \mathrm{kN} / \mathrm{m}=\left(0.5 \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(1.80 \mathrm{~m})^{2}\right)$
9）Unit Weight of Water given Total Thrust from Water Retained behind Wall匹
$f \mathbf{x} \gamma_{\mathrm{w}}=\left(2 \cdot \frac{\mathrm{~T}_{\mathrm{W}}}{\left(\mathrm{H}_{\mathrm{w}}\right)^{2}}\right)$
ex $9.876543 \mathrm{kN} / \mathrm{m}^{3}=\left(2 \cdot \frac{16 \mathrm{kN} / \mathrm{m}}{(1.80 \mathrm{~m})^{2}}\right)$

Gravity Retaining Wall ©

10) Earth Thrust Horizontal Component given Sum of Righting Moments

Open Calculator
ex $200.04 \mathrm{~N}=\left(\frac{0.6 \cdot 500.1 \mathrm{~N}}{1.5}\right)$
11) Overturning Moment
$f \mathrm{~F} \mathrm{M}_{\mathrm{o}}=\frac{\mathrm{M}_{\mathrm{r}}}{1.5}$
Open Calculator
ex $10.06667 \mathrm{~N}^{*} \mathrm{~m}=\frac{15.1 \mathrm{~N}^{*} \mathrm{~m}}{1.5}$
12) Pressure when Resultant is Outside Middle Third
$f \mathrm{x} p=2 \cdot \frac{\mathrm{R}_{\mathrm{v}}}{3 \cdot \mathrm{a}}$
ex $83.35 \mathrm{~Pa}=2 \cdot \frac{500.1 \mathrm{~N}}{3 \cdot 4 \mathrm{~m}}$
13) Resultant Outside Middle Third
$f x a=2 \cdot \frac{R_{v}}{3 \cdot p}$

ex $4.002401 \mathrm{~m}=2 \cdot \frac{500.1 \mathrm{~N}}{3 \cdot 83.3 \mathrm{~Pa}}$

14) Retaining Wall Righting Moment
$\mathrm{f}_{\mathrm{x}} \mathrm{M}_{\mathrm{r}}=1.5 \cdot \mathrm{M}_{\mathrm{o}}$
Open Calculator
ex $15.15 \mathrm{~N}^{*} \mathrm{~m}=1.5 \cdot 10.1 \mathrm{~N}^{*} \mathrm{~m}$
15) Total Downward Force on Soil for Horizontal Component τ
$f \mathrm{x} \mathrm{R}_{\mathrm{v}}=\frac{\mathrm{P}_{\mathrm{h}} \cdot 1.5}{\mu}$
Open Calculator
ex $500 \mathrm{~N}=\frac{200 \mathrm{~N} \cdot 1.5}{0.6}$
16) Total Downward Force on Soil when Resultant is Outside Middle Third E
$f \mathrm{x} \mathrm{R}_{\mathrm{v}}=\frac{\mathrm{p} \cdot 3 \cdot \mathrm{a}}{2}$
Open Calculator
$\mathrm{ex} 499.8 \mathrm{~N}=\frac{83.3 \mathrm{~Pa} \cdot 3 \cdot 4 \mathrm{~m}}{2}$

Variables Used

- a Middle Third Distance (Meter)
- d Horizontal Distance (Meter)
- Fshear Shear Force on Section (Newton)
- $\mathrm{H}_{\mathbf{w}}$ Height of Water (Meter)
- $\mathbf{M}_{\mathbf{b}}$ Bending Moment (Newton Meter)
- $\mathbf{M}_{\mathbf{o}}$ Overturning Moment (Newton Meter)
- $\mathbf{M r}_{\mathbf{r}}$ Retaining Wall Righting Moment (Newton Meter)
- p Earth Pressure (Pascal)
- $\mathbf{P}_{\mathbf{h}}$ Horizontal Component of Earth Thrust (Newton)
- $\mathbf{R}_{\mathbf{v}}$ Total Downward Force on Soil (Newton)
- $\mathbf{t}_{\mathbf{c}}$ Thickness of Counterfort (Millimeter)
- $\mathbf{T}_{\mathbf{W}}$ Thrust from Water (Kilonewton per Meter)
- \mathbf{V}_{1} Shear on Section 1 (Newton)
- $\mathbf{V}_{\mathbf{c}}$ Counterfort Shear Unit Stress (Megapascal)
- $\mathbf{V}_{\mathbf{o}}$ Normal Shear Unit Stress (Megapascal)
- $\mathrm{Y}_{\mathbf{w}}$ Unit Weight of Water (Kilonewton per Cubic Meter)
- $\boldsymbol{\theta}$ Angle between Earth and Wall (Degree)
- μ Coefficient of Sliding Friction
- Ф Angle Wall Face makes with Vertical (Degree)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Millimeter (mm), Meter (m)

Length Unit Conversion

- Measurement: Pressure in Megapascal (MPa), Pascal (Pa)

Pressure Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Surface Tension in Kilonewton per Meter (kN/m)

Surface Tension Unit Conversion

- Measurement: Moment of Force in Newton Meter (N*m)

Moment of Force Unit Conversion

- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Properties of Basic Material of Concrete Structures Formulas
- Design for Beams and Ultimate Strength for Rectangular Beams with Tension Reinforcement Formulas
- Design of Compression Members Formulas
- Design of Retaining Walls Formulas
- Design of Two Way Slab System and Footing Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/17/2023 | 2:55:56 AM UTC
Please leave your feedback here...

