
calculatoratoz.com

unitsconverters.com

Unsymmetrical Bending and Three Hinged Arches Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 15 Unsymmetrical Bending and Three Hinged Arches Formulas

Unsymmetrical Bending and Three Hinged Arches ©

Three Hinged Arches \mathbb{E}

1) Angle between Horizontal and Arch

ex $0.5625=3 \mathrm{~m} \cdot 4 \cdot \frac{16 \mathrm{~m}-(2 \cdot 2 \mathrm{~m})}{(16 \mathrm{~m})^{2}}$
2) Horizontal Distance from Support to Section for Angle between Horizontal and Arch
$f \mathrm{x} \mathrm{x}_{\mathrm{Arch}}=\left(\frac{1}{2}\right)-\left(\frac{\mathrm{y}^{\prime} \cdot \mathrm{l}^{2}}{8 \cdot \mathrm{f}}\right)$
Open Calculator
ex $2.666667 \mathrm{~m}=\left(\frac{16 \mathrm{~m}}{2}\right)-\left(\frac{0.5 \cdot(16 \mathrm{~m})^{2}}{8 \cdot 3 \mathrm{~m}}\right)$
3) Ordinate at any point along Central Line of Three-hinged Parabolic Arch $\boxed{\square}$
$f \mathrm{x} \mathrm{y}_{\text {Arch }}=\left(4 \cdot \mathrm{f} \cdot \frac{\mathrm{x}_{\text {Arch }}}{\mathrm{l}^{2}}\right) \cdot\left(1-\mathrm{x}_{\text {Arch }}\right)$
ex $1.3125 \mathrm{~m}=\left(4 \cdot 3 \mathrm{~m} \cdot \frac{2 \mathrm{~m}}{(16 \mathrm{~m})^{2}}\right) \cdot(16 \mathrm{~m}-2 \mathrm{~m})$
4) Ordinate of any point along Central Line of Three-hinged Circular Arch $\boxed{\square}$
$f x$
Open Calculator
$y_{\text {Arch }}=\left(\left(\left(R^{2}\right)-\left(\left(\frac{1}{2}\right)-x_{\text {Arch }}\right)^{2}\right)^{\frac{1}{2}}\right) \cdot R+f$
$\operatorname{ex} 3 \mathrm{~m}=\left(\left(\left((6 \mathrm{~m})^{2}\right)-\left(\left(\frac{16 \mathrm{~m}}{2}\right)-2 \mathrm{~m}\right)^{2}\right)^{\frac{1}{2}}\right) \cdot 6 m+3 m$
5) Rise of Arch in Three-hinged Circular Arch
$\mathrm{f}=\left(\left(\left(\mathrm{R}^{2}\right)-\left(\left(\frac{1}{2}\right)-\mathrm{x}_{\text {Arch }}\right)^{2}\right)^{\frac{1}{2}}\right) \cdot \mathrm{R}+\mathrm{y}_{\text {Arch }}$

$$
\mathrm{ex} 1.4 \mathrm{~m}=\left(\left(\left((6 \mathrm{~m})^{2}\right)-\left(\left(\frac{16 \mathrm{~m}}{2}\right)-2 \mathrm{~m}\right)^{2}\right)^{\frac{1}{2}}\right) \cdot 6 \mathrm{~m}+1.4 \mathrm{~m}
$$

6) Rise of Three-Hinged Arch for Angle between Horizontal and Arch
$f \mathbf{f x}=\frac{\mathrm{y}^{\prime} \cdot\left(\mathrm{l}^{2}\right)}{4 \cdot\left(1-\left(2 \cdot \mathrm{x}_{\text {Arch }}\right)\right)}$
ex $2.666667 \mathrm{~m}=\frac{0.5 \cdot\left((16 \mathrm{~m})^{2}\right)}{4 \cdot(16 \mathrm{~m}-(2 \cdot 2 \mathrm{~m}))}$
7) Rise of three-hinged Parabolic Arch
$f=y_{\text {Arch }} \cdot\left(l^{2}\right)$
Open Calculator
$\mathbf{f x} \mathrm{f}=\frac{\mathrm{x}_{\text {Arch }} \cdot\left(\mathrm{l}-\mathrm{x}_{\text {Arch }}\right)}{4}$
ex $3.2 \mathrm{~m}=\frac{1.4 \mathrm{~m} \cdot\left((16 \mathrm{~m})^{2}\right)}{4 \cdot 2 \mathrm{~m} \cdot(16 \mathrm{~m}-2 \mathrm{~m})}$
8) Span of Arch in Three-hinged Circular Arch
fx
$1=2 \cdot\left(\left(\sqrt{\left(R^{2}\right)-\left(\frac{\mathrm{y}_{\text {Arch }}-\mathrm{f}}{\mathrm{R}}\right)^{2}}\right)+\mathrm{x}_{\text {Arch }}\right)$
$\operatorname{ex} 15.98814 \mathrm{~m}=2 \cdot\left(\left(\sqrt{\left((6 \mathrm{~m})^{2}\right)-\left(\frac{1.4 \mathrm{~m}-3 \mathrm{~m}}{6 m}\right)^{2}}\right)+2 \mathrm{~m}\right)$

Unsymmetrical Bending

9) Bending Moment about Axis XX given Maximum Stress in Unsymmetrical Bending
$f_{x} M_{x}=\left(f_{M a x}-\left(\frac{M_{y} \cdot x}{I_{y}}\right)\right) \cdot \frac{I_{x}}{y}$
Open Calculator
ex $238.8369 \mathrm{~N} * \mathrm{~m}=\left(1430 \mathrm{~N} / \mathrm{m}^{2}-\left(\frac{307 \mathrm{~N}^{*} \mathrm{~m} \cdot 104 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right) \cdot \frac{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{169 \mathrm{~mm}}$
10) Bending Moment about Axis YY given Maximum Stress in Unsymmetrical Bending
$f_{x} M_{y}=\left(f_{M a x}-\left(\frac{M_{x} \cdot y}{I_{x}}\right)\right) \cdot \frac{I_{y}}{x}$
Open Calculator
ex $306.7402 \mathrm{~N}^{*} \mathrm{~m}=\left(1430 \mathrm{~N} / \mathrm{m}^{2}-\left(\frac{239 \mathrm{~N}^{*} \mathrm{~m} \cdot 169 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right) \cdot \frac{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{104 \mathrm{~mm}}$
\#
11) Distance from Point to $X X$ Axis given Maximum Stress in Unsymmetrical Bending
$\mathrm{fx} \mathrm{y}=\left(\mathrm{f}_{\operatorname{Max}}-\left(\frac{\mathrm{M}_{\mathrm{y}} \cdot \mathrm{x}}{\mathrm{I}_{\mathrm{y}}}\right)\right) \cdot \frac{\mathrm{I}_{\mathrm{x}}}{\mathrm{M}_{\mathrm{x}}}$
ex $168.8847 \mathrm{~mm}=\left(1430 \mathrm{~N} / \mathrm{m}^{2}-\left(\frac{307 \mathrm{~N}^{*} \mathrm{~m} \cdot 104 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right) \cdot \frac{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{239 \mathrm{~N}^{*} \mathrm{~m}^{2}}$
12) Distance from $Y Y$ axis to stress point given Maximum Stress in Unsymmetrical Bending
$\mathrm{fx} \mathrm{x}=\left(\mathrm{f}_{\mathrm{Max}}-\left(\frac{\mathrm{M}_{\mathrm{x}} \cdot \mathrm{y}}{\mathrm{I}_{\mathrm{x}}}\right)\right) \cdot \frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{M}_{\mathrm{y}}}$
Open Calculator
ex $103.912 \mathrm{~mm}=\left(1430 \mathrm{~N} / \mathrm{m}^{2}-\left(\frac{239 \mathrm{~N}^{*} \mathrm{~m} \cdot 169 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)\right) \cdot \frac{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}{307 \mathrm{~N}^{*} \mathrm{~m}}$
13) Maximum Stress in Unsymmetrical Bending
$f \mathrm{fx} \mathrm{f}_{\mathrm{Max}}=\left(\frac{\mathrm{M}_{\mathrm{x}} \cdot \mathrm{y}}{\mathrm{I}_{\mathrm{x}}}\right)+\left(\frac{\mathrm{M}_{\mathrm{y}} \cdot \mathrm{x}}{\mathrm{I}_{\mathrm{y}}}\right)$
Open Calculator
ex $1430.54 \mathrm{~N} / \mathrm{m}^{2}=\left(\frac{239 \mathrm{~N}^{*} \mathrm{~m} \cdot 169 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)+\left(\frac{307 \mathrm{~N}^{*} \mathrm{~m} \cdot 104 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)$
14) Moment of Inertia about XX given Maximum Stress in Unsymmetrical Bending
$f \mathrm{fx} \mathrm{I}_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{x}} \cdot \mathrm{y}}{\mathrm{f}_{\mathrm{Max}}-\left(\frac{\mathrm{M}_{\mathrm{y}} \cdot \mathrm{x}}{\mathrm{I}_{\mathrm{y}}}\right)}$
ex $51.03482 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\frac{239 \mathrm{~N}^{*} \mathrm{~m} \cdot 169 \mathrm{~mm}}{1430 \mathrm{~N} / \mathrm{m}^{2}-\left(\frac{307 \mathrm{~N}^{*} \mathrm{~m} \cdot 104 \mathrm{~mm}}{50 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)}$
15) Moment of Inertia about YY given Maximum Stress in Unsymmetrical Bending
$\mathrm{fx}_{\mathrm{y}}=\frac{\mathrm{M}_{\mathrm{y}} \cdot \mathrm{x}}{\mathrm{f}_{\mathrm{Max}}-\left(\frac{\mathrm{M}_{\mathrm{x}} \cdot \mathrm{y}}{\mathrm{I}_{\mathrm{x}}}\right)}$
ex $50.04235 \mathrm{~kg} \cdot \mathrm{~m}^{2}=\frac{307 \mathrm{~N}^{*} \mathrm{~m} \cdot 104 \mathrm{~mm}}{1430 \mathrm{~N} / \mathrm{m}^{2}-\left(\frac{239 \mathrm{~N}^{*} \mathrm{~m} \cdot 169 \mathrm{~mm}}{51 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)}$

Variables Used

- f Rise of arch (Meter)
- $\mathbf{f}_{\text {Max }}$ Maximum Stress (Newton per Square Meter)
- $\mathbf{I}_{\mathbf{X}}$ Moment of Inertia about X-Axis (Kilogram Square Meter)
- $\mathbf{I}_{\mathbf{y}}$ Moment of Inertia about Y-Axis (Kilogram Square Meter)
- I Span of Arch (Meter)
- $\mathbf{M}_{\mathbf{x}}$ Bending Moment about X-Axis (Newton Meter)
- $\mathbf{M}_{\mathbf{y}}$ Bending Moment about Y-Axis (Newton Meter)
- R Radius of Arch (Meter)
- X Distance from Point to YY Axis (Millimeter)
- XArch Horizontal Distance from Support (Meter)
- y Distance from Point to XX Axis (Millimeter)
- \mathbf{y}^{\prime} Angle between Horizontal and Arch
- YArch Ordinate of Point on Arch (Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Meter (m), Millimeter (mm)

Length Unit Conversion

- Measurement: Pressure in Newton per Square Meter (N/m²)

Pressure Unit Conversion

- Measurement: Moment of Inertia in Kilogram Square Meter (kg•m²)

Moment of Inertia Unit Conversion

- Measurement: Moment of Force in Newton Meter (N*m)

Moment of Force Unit Conversion $\sqrt{\Omega}$

Check other formula lists

- Eccentric Loading Formulas Σ
- Structural Analysis of Beams Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

