

Electrowave Dynamics Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Electrowave Dynamics Formulas

Electrowave Dynamics

1) Absolute Permeability using Relative Permeability and Permeability of Free Space

$$\mu_{
m abs} = \mu_{
m rel} \cdot {
m [Permeability-vacuum]}$$

Open Calculator

$$0.000628 \mathrm{H/m} = 500 \cdot \mathrm{[Permeability-vacuum]}$$

2) Characteristic Impedance of Line

$$\mathbf{z}_{\mathrm{o}} = \sqrt{\mathbf{p} \cdot \mathbf{\pi} \cdot \frac{10^{-7}}{\in `} \cdot \left(rac{\mathbf{p}_{\mathrm{d}}}{\mathbf{p}_{\mathrm{b}}}
ight)}$$

Open Calculator

$$ext{ex} \ 0.860872\Omega = \sqrt{29.31 ext{H/cm} \cdot \pi \cdot rac{10^{-7}}{1.4 \mu ext{F/mm}}} \cdot \left(rac{21.23 ext{cm}}{20 ext{cm}}
ight)$$

3) Conductance of Coaxial Cable

$$G_{c} = rac{2 \cdot \pi \cdot \sigma_{c}}{\ln \left(rac{b_{r}}{a_{r}}
ight)}$$

Open Calculator

$$ext{ex} = rac{2 \cdot \pi \cdot 0.4 ext{S/cm}}{\ln \left(rac{18.91 ext{cm}}{0.25 ext{cm}}
ight)}$$

4) Cutoff Wavelength

 $\lambda_{
m cm} = rac{2 \cdot {
m n_r} \cdot {
m p_d}}{m}$

Open Calculator

 \mathbf{ex} 21.23cm = $\frac{2 \cdot 2 \cdot 21.23 \text{cm}}{4}$

5) Free Space Magnetic Flux Density

 $\mathbf{f}_{\mathbf{x}} \mathbf{B}_{\mathbf{o}} = [\text{Permeability-vacuum}] \cdot \mathbf{H}_{\mathbf{o}}]$

Open Calculator

 $\mathbf{ex} \ 2.3 \mathrm{E^-6Wb/m^2} = \mathrm{[Permeability-vacuum]} \cdot 1.8 \mathrm{A/m}$

6) Inductance between Conductors

 $\mathbf{L} = \mathbf{\mu} \cdot \mathbf{\pi} \cdot 10^{-7} \cdot rac{\mathrm{p_d}}{\mathrm{p_h}}$

Open Calculator

ex $0.97743 \mathrm{mH} = 29.31 \mathrm{H/cm} \cdot \pi \cdot 10^{-7} \cdot \frac{21.23 \mathrm{cm}}{20 \mathrm{cm}}$

7) Inductance per unit Length of Coaxial Cable 🚰

 \mathbf{f} $\mathbf{L}_{\mathrm{c}} = rac{\mu}{2} \cdot \pi \cdot \ln igg(rac{b_{\mathrm{r}}}{a_{\mathrm{r}}}igg)igg|$

Open Calculator 🗗

 $extbf{ex} 199.1685 ext{H/cm} = rac{29.31 ext{H/cm}}{2} \cdot \pi \cdot ext{ln} igg(rac{18.91 ext{cm}}{0.25 ext{cm}}igg)$

8) Inner Resistance of Coaxial Cable 🛂

$$ext{R}_{ ext{in}} = rac{1}{2 \cdot \pi \cdot ext{a}_{ ext{r}} \cdot \delta \cdot ext{\sigma}_{ ext{c}}}$$

Open Calculator

$$= \frac{1}{2 \cdot \pi \cdot 0.25 \mathrm{cm} \cdot 20.1 \mathrm{cm} \cdot 0.4 \mathrm{S/cm} }$$

9) Internal Inductance of Long Straight Wire

Open Calculator

Open Calculator

ex
$$116.6208 \mathrm{H/m} = \frac{29.31 \mathrm{H/cm}}{8 \cdot \pi}$$

10) Magnetic Flux Density using Magnetic Field Strength, and Magnetization

0.001072FD [D......] (1.0 A / ... 1500.2 A / ...)

$$oxed{ex} 0.001973 ext{T} = ext{[Permeability-vacuum]} \cdot (1.8 ext{A/m} + 1568.2 ext{A/m})$$

11) Magnetic Force by Lorentz Force Equation

 $\mathbf{E} \mathbf{B} = [\text{Permeability-vacuum}] \cdot (\mathbf{H}_0 + \mathbf{M}_{em})$

$$\mathbf{F}_{ ext{mag}} = \mathbf{Q} \cdot \left(\mathbf{E}_{ ext{lf}} + \left(\mathbf{v} \cdot \mathbf{B} \cdot \sin(\mathbf{ heta})
ight)
ight)$$
 Open Calculator $oldsymbol{oldsymbol{C}}$

12) Magnetic Susceptibility using Relative Permeability

fx $\chi_{
m m}=\mu-1$

Open Calculator 🗗

m ex = 2930 H/m = 29.31 H/cm - 1

13) Magnetization using Magnetic Field Strength, and Magnetic Flux Density

 $\mathbf{M}_{\mathrm{em}} = \left(rac{\mathrm{B}}{\mathrm{[Permeability-vacuum]}}
ight) - \mathrm{H}_{\mathrm{o}}$

Open Calculator 🗗

 $oxed{ex} oxed{1568.264 ext{A/m} = \left(rac{0.001973 ext{T}}{[ext{Permeability-vacuum}]}
ight) - 1.8 ext{A/m}}$

14) Magnetomotive Force given Reluctance and Magnetic Flux

fx $V_{
m m} = \Phi \cdot R$

Open Calculator

 $\texttt{ex} \boxed{400 \text{AT} = 20000 \text{Wb} \cdot 0.02 \text{AT/Wb}}$

15) Magnitude of Wavevector

fx $k = \omega \cdot \sqrt{\mu \cdot \in '}$

Open Calculator

 $\boxed{ 4.82113 = 2.38 \mathrm{rad/s} \cdot \sqrt{29.31 \mathrm{H/cm} \cdot 1.4 \mu\mathrm{F/mm} } }$

16) Outer Resistance of Coaxial Cable

 $ext{R}_{ ext{out}} = rac{1}{2 \cdot \pi \cdot \delta \cdot \mathbf{b}_r \cdot \mathbf{\sigma}_s}$

Open Calculator 2

Open Calculator 2

Open Calculator 2

Open Calculator

 $oxed{ex} 0.104682\Omega = rac{1}{2 \cdot \pi \cdot 20.1 \mathrm{cm} \cdot 18.91 \mathrm{cm} \cdot 0.4 \mathrm{S/cm}}$

17) Phase Velocity in Microstrip Line

 $\left| \mathbf{v}_{\mathrm{p}} = rac{\left| \mathbf{c}
ight|}{\sqrt{\in '}}
ight|$

 $8E^11cm/s = \frac{[c]}{\sqrt{1.4uF/mm}}$

18) Radian Cutoff Angular Frequency 🗲

 $\omega_{
m cm} = rac{{
m m} \cdot \pi \cdot [{
m c}]}{{
m n}_{
m r} \cdot {
m p}_{
m d}}$

 $8.9E^{9} \text{rad/s} = \frac{4 \cdot \pi \cdot [c]}{2 \cdot 21.23 \text{ cm}}$

19) Resistance of Cylindrical Conductor 🗗

$$m R_{con} = rac{L_{con}}{\sigma_c \cdot S_{con}}$$

$$\frac{10\text{m}}{\text{S/cm} \cdot 10\text{e-3m}}$$

20) Skin Effect Resistivity 🗗

fx
$$m R_s = rac{2}{\sigma_c \cdot \delta \cdot p_b}$$

Open Calculator 🖸

ex
$$124.3781\Omega^* \text{cm} = \frac{2}{0.4\text{S/cm} \cdot 20.1\text{cm} \cdot 20\text{cm}}$$

21) Total Resistance of Coaxial Cable

$$\mathbf{R}_{t} = rac{1}{2 \cdot \pi \cdot \delta \cdot \sigma_{c}} \cdot \left(rac{1}{a_{r}} + rac{1}{b_{r}}
ight)$$

Open Calculator 🗗

$$oxed{ex} 8.022839\Omega = rac{1}{2 \cdot \pi \cdot 20.1 ext{cm} \cdot 0.4 ext{S/cm}} \cdot \left(rac{1}{0.25 ext{cm}} + rac{1}{18.91 ext{cm}}
ight)$$

Variables Used

- ∈ Dielectric Permitivitty (Microfarad per Millimeter)
- **a**_r Inner Radius of Coaxial Cable (Centimeter)
- **B** Magnetic Flux Density (*Tesla*)
- Bo Free Space Magnetic Flux Density (Weber per Square Meter)
- **b**_r Outer Radius of Coaxial Cable (Centimeter)
- Elf Electric Field (Newton per Coulomb)
- F_{mag} Magnetic Force (Newton)
- Gc Conductance of Coaxial Cable (Siemens)
- Ho Magnetic Field Strength (Ampere per Meter)
- k Wave Vector
- L Conductor Inductance (Millihenry)
- La Internal Inductance of Long Straight Wire (Henry per Meter)
- L_c Inductance per unit Length of Coaxial Cable (Henry per Centimeter)
- L_{con} Length of Cylindrical Conductor (Meter)
- m Mode Number
- Mem Magnetization (Ampere per Meter)
- n_r Refractive Index
- p_b Plate Width (Centimeter)
- p_d Plate Distance (Centimeter)
- Q Charge of Particle (Coulomb)
- R Reluctance (Ampere-Turn per Weber)

- R_{con} Resistance of Cylindrical Conductor (Ohm)
- R_{in} Inner Resistance of Coaxial Cable (Ohm)
- Rout Outer Resistance of Coaxial Cable (Ohm)
- Rs Skin Effect Resistivity (Ohm Centimeter)
- R_f Total Resistance of Coaxial Cable (Ohm)
- S_{con} Cross Sectional Area of Cylindrical (Square Meter)
- **V**_m Magnetomotive Voltage (Ampere-Turn)
- V_D Phase Velocity (Centimeter per Second)
- **Z**₀ Characteristic Impedance (Ohm)
- δ Skin Depth (Centimeter)
- **0** Incidence Angle (Degree)
- λ_{cm} Cutoff Wavelength (Centimeter)
- Magnetic Permeability (Henry per Centimeter)
- μ_{abs} Absolute Permeability of Material (Henry per Meter)
- µ_{rel} Relative Permeability of Material
- V Speed of Charged Particle (Meter per Second)
- σ_c Electrical Conductivity (Siemens per Centimeter)
- Φ Magnetic Flux (Weber)
- Xm Magnetic Susceptibility (Henry per Meter)
- **ω** Angular Frequency (Radian per Second)
- ω_{cm} Cutoff Angular Frequency (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [c], 299792458.0 Light speed in vacuum
- Constant: [Permeability-vacuum], 1.2566E-6 Permeability of vacuum
- Function: In, In(Number)

 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Function: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Centimeter (cm), Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s), Centimeter per Second (cm/s)
 - Speed Unit Conversion
- Measurement: Electric Charge in Coulomb (C)
 Electric Charge Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion

- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Magnetic Flux in Weber (Wb)
 Magnetic Flux Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Electric Conductance in Siemens (S)

 Electric Conductance Unit Conversion
- Measurement: Inductance in Millihenry (mH)
 Inductance Unit Conversion
- Measurement: Magnetic Flux Density in Weber per Square Meter (Wb/m²), Tesla (T)
 Magnetic Flux Density Unit Conversion
- Measurement: Magnetomotive Force in Ampere-Turn (AT)
 Magnetomotive Force Unit Conversion
- Measurement: Magnetic Field Strength in Ampere per Meter (A/m)
 Magnetic Field Strength Unit Conversion
- Measurement: Wavelength in Centimeter (cm)
 Wavelength Unit Conversion
- Measurement: Electric Field Strength in Newton per Coulomb (N/C)
 Electric Field Strength Unit Conversion
- Measurement: Electric Resistivity in Ohm Centimeter (Ω*cm)
 Electric Resistivity Unit Conversion
- Measurement: Electric Conductivity in Siemens per Centimeter (S/cm)

 Electric Conductivity Unit Conversion
- Measurement: Magnetic Permeability in Henry per Meter (H/m), Henry per Centimeter (H/cm)
 Magnetic Permeability Unit Conversion

- Measurement: Angular Frequency in Radian per Second (rad/s)

 Angular Frequency Unit Conversion
- Measurement: Reluctance in Ampere-Turn per Weber (AT/Wb)

 Reluctance Unit Conversion
- Measurement: Permittivity in Microfarad per Millimeter (μF/mm)
 Permittivity Unit Conversion

Check other formula lists

- Electromagnetic Radiation and Electrowave Dynamics Antennas Formulas
 - Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/27/2024 | 6:29:15 AM UTC

Please leave your feedback here...

