
calculatoratoz.com

unitsconverters.com

Length of Valley Curve Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Length of Valley Curve Formulas

Length of Valley Curve ©

Design of Valley Curve ©

1) Design Speed given Length of Valley Curve
$f \mathbf{x} v=\left(L_{s} \cdot R \cdot C_{a}\right)^{\frac{1}{3}}$
Open Calculator
ex $4.09752 \mathrm{~m} / \mathrm{s}=(7 \mathrm{~m} \cdot 2.34 \mathrm{~m} \cdot 4.2 \mathrm{~m} / \mathrm{s})^{\frac{1}{3}}$
2) Design Speed given Length of Valley Curve and Time
$f \mathbf{f x}=\frac{L_{\mathrm{s}}}{\mathrm{t}}$
Open Calculator
ex $1.75 \mathrm{~m} / \mathrm{s}=\frac{7 \mathrm{~m}}{4 \mathrm{~s}}$
3) Design Speed given Total Length of Valley Curve $\boxed{\square}$
$f \mathbf{f x}=\left(\left(\frac{\mathrm{L}_{\mathrm{s}}}{2}\right)^{2} \cdot \frac{\mathrm{C}_{\mathrm{a}}}{\mathrm{N}}\right)^{\frac{1}{3}}$
ex $3.881214 \mathrm{~m} / \mathrm{s}=\left(\left(\frac{7 \mathrm{~m}}{2}\right)^{2} \cdot \frac{4.2 \mathrm{~m} / \mathrm{s}}{0.88 \mathrm{rad}}\right)^{\frac{1}{3}}$
4) Deviation Angle given Total Length of Valley Curve
$f_{\mathrm{x}} \mathrm{N}=\left(\frac{\mathrm{L}_{\mathrm{s}}}{2}\right)^{2} \cdot \frac{\mathrm{C}_{\mathrm{a}}}{\mathrm{v}^{3}}$
ex $0.4116 \mathrm{rad}=\left(\frac{7 \mathrm{~m}}{2}\right)^{2} \cdot \frac{4.2 \mathrm{~m} / \mathrm{s}}{(5 \mathrm{~m} / \mathrm{s})^{3}}$

5) Length of Valley Curve

$f \mathrm{fx} \mathrm{L}_{\mathrm{s}}=\frac{\mathrm{v}^{3}}{\mathrm{R} \cdot \mathrm{C}_{\mathrm{a}}}$
Open Calculator

$$
\mathrm{ex} 12.71876 \mathrm{~m}=\frac{(5 \mathrm{~m} / \mathrm{s})^{3}}{2.34 \mathrm{~m} \cdot 4.2 \mathrm{~m} / \mathrm{s}}
$$

6) Length of Valley Curve given Time and Design Speed
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}_{\mathrm{s}}=\mathrm{v} \cdot \mathrm{t}$
ex $20 \mathrm{~m}=5 \mathrm{~m} / \mathrm{s} \cdot 4 \mathrm{~s}$
7) Radius of Curve given Length of Valley Curve
$\mathrm{fx} R=\frac{\mathrm{v}^{3}}{\mathrm{~L}_{\mathrm{s}} \cdot \mathrm{C}_{\mathrm{a}}}$
Open Calculator
ex $4.251701 \mathrm{~m}=\frac{(5 \mathrm{~m} / \mathrm{s})^{3}}{7 \mathrm{~m} \cdot 4.2 \mathrm{~m} / \mathrm{s}}$
8) Rate of Change of Acceleration
$f_{\mathrm{x}} \mathrm{C}_{\mathrm{a}}=\frac{\mathrm{v}^{3}}{\mathrm{~L}_{\mathrm{s}} \cdot \mathrm{R}}$

Open Calculator

ex $7.631258 \mathrm{~m} / \mathrm{s}=\frac{(5 \mathrm{~m} / \mathrm{s})^{3}}{7 \mathrm{~m} \cdot 2.34 \mathrm{~m}}$
9) Rate of Change of Acceleration given Total Length of Valley Curve
$f \times C_{a}=\left(\frac{L_{s}}{2}\right)^{2} \cdot N \cdot v^{3}$
ex $1347.5 \mathrm{~m} / \mathrm{s}=\left(\frac{7 \mathrm{~m}}{2}\right)^{2} \cdot 0.88 \mathrm{rad} \cdot(5 \mathrm{~m} / \mathrm{s})^{3}$
10) Time given Length of Valley Curve and Design Speed
$f \mathrm{x} t=\frac{L_{\mathrm{s}}}{\mathrm{v}}$
Open Calculator
ex $1.4 \mathrm{~s}=\frac{7 \mathrm{~m}}{5 \mathrm{~m} / \mathrm{s}}$
11) Time given Rate of Change of Acceleration
$f x t=\frac{\frac{\mathrm{v}^{2}}{\mathrm{R}}}{\mathrm{C}_{\mathrm{a}}}$
Open Calculator
ex $2.543753 \mathrm{~s}=\frac{\frac{(5 \mathrm{~m} / \mathrm{s})^{2}}{2.34 \mathrm{~m}}}{4.2 \mathrm{~m} / \mathrm{s}}$
12) Total Length of Valley Curve
$f \mathrm{fx} \mathrm{L}_{\mathrm{s}}=2 \cdot \sqrt{\frac{\mathrm{~N} \cdot \mathrm{v}^{3}}{\mathrm{C}_{\mathrm{a}}}}$

Open Calculator

ex $10.23533 \mathrm{~m}=2 \cdot \sqrt{\frac{0.88 \mathrm{rad} \cdot(5 \mathrm{~m} / \mathrm{s})^{3}}{4.2 \mathrm{~m} / \mathrm{s}}}$

Length of Valley Curve greater than Stopping Sight Distance

13) Deviation Angle given Length of Valley Curve Greater than Stopping Sight Distance
$\mathrm{fx}_{\mathrm{x}} \mathrm{N}=\frac{\mathrm{L}_{\mathrm{s}} \cdot\left(2 \cdot \mathrm{~h}_{1}+2 \cdot \mathrm{~S} \cdot \tan \left(\alpha_{\text {angle }}\right)\right)}{\mathrm{S}^{2}}$
Open Calculator
$\mathrm{ex} 0.965823 \mathrm{rad}=\frac{7 \mathrm{~m} \cdot\left(2 \cdot 0.75 \mathrm{~m}+2 \cdot 3.56 \mathrm{~m} \cdot \tan \left(2^{\circ}\right)\right)}{(3.56 \mathrm{~m})^{2}}$
14) Driver Eye Height given Length of Valley Curve Greater than Stopping Sight Distance

$$
f \mathbf{x} \mathrm{~h}_{1}=\frac{\mathrm{N} \cdot \mathrm{~S}^{2}-2 \cdot \mathrm{~L}_{\mathrm{s}} \cdot \mathrm{~S} \cdot \tan \left(\alpha_{\text {angle }}\right)}{2 \cdot \mathrm{~L}_{\mathrm{s}}}
$$

ex $0.672308 \mathrm{~m}=\frac{0.88 \mathrm{rad} \cdot(3.56 \mathrm{~m})^{2}-2 \cdot 7 \mathrm{~m} \cdot 3.56 \mathrm{~m} \cdot \tan \left(2^{\circ}\right)}{2 \cdot 7 \mathrm{~m}}$
15) Inclination Angle given Length of Valley Curve Greater than Stopping Sight Distance
$f \mathbf{x} \alpha_{\text {angle }}=a \tan \left(\frac{\mathrm{~N} \cdot \mathrm{~S}^{2}-2 \cdot \mathrm{~h}_{1}}{2 \cdot \mathrm{~S} \cdot \mathrm{~L}_{\mathrm{s}}}\right)$
Open Calculator
ex $10.96106^{\circ}=a \tan \left(\frac{0.88 \mathrm{rad} \cdot(3.56 \mathrm{~m})^{2}-2 \cdot 0.75 \mathrm{~m}}{2 \cdot 3.56 \mathrm{~m} \cdot 7 \mathrm{~m}}\right)$
16) Length of Valley Curve Greater than Stopping Sight Distance
$\mathrm{fx} \mathrm{L}_{\mathrm{s}}=\frac{\mathrm{N} \cdot \mathrm{S}^{2}}{2 \cdot \mathrm{~h}_{1}+2 \cdot \mathrm{~S} \cdot \tan \left(\alpha_{\text {angle }}\right)}$
Open Calculator
ex $6.377982 \mathrm{~m}=\frac{0.88 \mathrm{rad} \cdot(3.56 \mathrm{~m})^{2}}{2 \cdot 0.75 \mathrm{~m}+2 \cdot 3.56 \mathrm{~m} \cdot \tan \left(2^{\circ}\right)}$

Length of Valley Curve Less than Stopping Sight Distance

17) Deviation Angle Given Length of Valley Curve Less than Stopping Sight Distance

$$
\begin{aligned}
& f \mathbf{N}=(2 \cdot \mathrm{~S})-\frac{2 \cdot \mathrm{~h}_{1}+\left(2 \cdot \mathrm{~S} \cdot \tan \left(\alpha_{\text {angle }}\right)\right)}{\mathrm{L}_{\mathrm{s}}} \quad \text { Open Calculator © } \\
& \text { ex } 6.870195 \mathrm{rad}=(2 \cdot 3.56 \mathrm{~m})-\frac{2 \cdot 0.75 \mathrm{~m}+\left(2 \cdot 3.56 \mathrm{~m} \cdot \tan \left(2^{\circ}\right)\right)}{7 \mathrm{~m}}
\end{aligned}
$$

18) Driver Sight Height given Length of Valley Curve Less than Stopping Sight Distance

$$
\begin{aligned}
& f \times \mathrm{h}_{1}=\frac{\left(\mathrm{L}_{\mathrm{s}}-2 \cdot \mathrm{~S}\right) \cdot \mathrm{N}+2 \cdot \mathrm{~S} \cdot \tan \left(\alpha_{\text {angle }}\right)}{2} \quad \text { Open Calculator } \mathrm{e} \\
& \mathbf{e x} 0.071518 \mathrm{~m}=\frac{(7 \mathrm{~m}-2 \cdot 3.56 \mathrm{~m}) \cdot 0.88 \mathrm{rad}+2 \cdot 3.56 \mathrm{~m} \cdot \tan \left(2^{\circ}\right)}{2}
\end{aligned}
$$

19) Inclination Angle given Length of Valley Curve Less than Stopping Sight Distance
$f \mathrm{x} \alpha_{\text {angle }}=a \tan \left(\frac{\left(\mathrm{~L}_{\mathrm{s}}-2 \cdot \mathrm{~S}\right) \cdot \mathrm{N}+2 \cdot \mathrm{~h}_{1}}{2 \cdot \mathrm{~S}}\right)$
Open Calculator
ex $11.08072^{\circ}=a \tan \left(\frac{(7 \mathrm{~m}-2 \cdot 3.56 \mathrm{~m}) \cdot 0.88 \mathrm{rad}+2 \cdot 0.75 \mathrm{~m}}{2 \cdot 3.56 \mathrm{~m}}\right)$
20) Length of Valley Curve Less than Stopping Sight Distance
$f_{\mathrm{x}} \mathrm{L}_{\mathrm{S}}=2 \cdot \mathrm{~S}-\frac{2 \cdot \mathrm{~h}_{1}+\left(2 \cdot \mathrm{~S} \cdot \tan \left(\alpha_{\text {angle }}\right)\right)}{\mathrm{N}}$
Open Calculator
ex $5.132914 \mathrm{~m}=2 \cdot 3.56 \mathrm{~m}-\frac{2 \cdot 0.75 \mathrm{~m}+\left(2 \cdot 3.56 \mathrm{~m} \cdot \tan \left(2^{\circ}\right)\right)}{0.88 \mathrm{rad}}$

Variables Used

- $\mathbf{C}_{\mathbf{a}}$ Rate of Change of Acceleration (Meter per Second)
- $\mathbf{h}_{\mathbf{1}}$ Driver Sight Height (Meter)
- $\mathbf{L}_{\mathbf{s}}$ Length of Curve (Meter)
- \mathbf{N} Deviation Angle (Radian)
- R Radius of Curve (Meter)
- S Sight Distance (Meter)
- t Time (Second)
- V Design Speed (Meter per Second)
- $\alpha_{\text {angle }}$ Inclination (Degree)

Constants, Functions, Measurements used

- Function: atan, atan(Number)

Inverse trigonometric tangent function

- Function: sqrt, sqrt(Number)

Square root function

- Function: $\boldsymbol{t a n}, \tan ($ Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Angle in Radian (rad), Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

- Length of Valley Curve Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

