

Basics of Potpourri Reactions Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Basics of Potpourri Reactions Formulas

Basics of Potpourri Reactions

1) Initial Reactant Concentration for First Order Rxn for MFR using Intermediate Concentration

$$\mathbf{K} \mathbf{C}_{\mathrm{A0}} = rac{\mathbf{C}_{\mathrm{R}} \cdot \left(1 + \left(\mathbf{k}_{\mathrm{I}} \cdot \mathbf{ au}_{\mathrm{m}}
ight)
ight) \cdot \left(1 + \left(\mathbf{k}_{2} \cdot \mathbf{ au}_{\mathrm{m}}
ight)
ight)}{\mathbf{k}_{\mathrm{I}} \cdot \mathbf{ au}_{\mathrm{m}}}$$

$$\underbrace{ 23.48889 \text{mol/m}^{_3} = \frac{10 \text{mol/m}^{_3} \cdot \left(1 + \left(0.42 \text{s}^{_{-1}} \cdot 12 \text{s} \right) \right) \cdot \left(1 + \left(0.08 \text{s}^{_{-1}} \cdot 12 \text{s} \right) \right) }_{0.42 \text{s}^{_{-1}} \cdot 12 \text{s}} }$$

2) Initial Reactant Concentration for First Order Rxn in MFR at Maximum Intermediate Concentration

$$\mathbf{C}_{A0} = C_{R,max} \cdot \left(\left(\left(\left(\left(rac{k_2}{k_I}
ight)^{rac{1}{2}}
ight) + 1
ight)^2
ight)$$

$$82.53391 \text{mol/m}^{_3} = 40 \text{mol/m}^{_3} \cdot \left(\left(\left(\left(\frac{0.08 \text{s}^{_{-1}}}{0.42 \text{s}^{_{-1}}} \right)^{\frac{1}{2}} \right) + 1 \right)^2 \right)$$

3) Initial Reactant Concentration for First Order Rxn in Series for Maximum Intermediate Concentration

$$\mathbf{C}_{\mathrm{A0}} = rac{C_{\mathrm{R,max}}}{\left(rac{k_{\mathrm{I}}}{k_{\mathrm{2}}}
ight)^{rac{k_{\mathrm{2}}}{k_{\mathrm{2}}-k_{\mathrm{I}}}}}$$

4) Initial Reactant Concentration for First Order Rxn in Series for MFR using Product Concentration

 $\mathbf{K} \mathbf{C}_{\mathrm{A0}} = rac{\mathbf{C}_{\mathrm{S}} \cdot \left(1 + \left(\mathbf{k}_{\mathrm{I}} \cdot \mathbf{ au}_{\mathrm{m}}
ight) \cdot \left(1 + \left(\mathbf{k}_{\mathrm{2}} \cdot \mathbf{ au}_{\mathrm{m}}
ight)
ight)}{\mathbf{k}_{\mathrm{I}} \cdot \mathbf{k}_{\mathrm{2}} \cdot \left(\mathbf{ au}_{\mathrm{m}}^{2}
ight)}$

Open Calculator 🚰

 $\boxed{ 48.93519 \mathrm{mol/m^3} = \frac{20 \mathrm{mol/m^3} \cdot \left(1 + \left(0.42 \mathrm{s^{\scriptscriptstyle -1}} \cdot 12 \mathrm{s}\right)\right) \cdot \left(1 + \left(0.08 \mathrm{s^{\scriptscriptstyle -1}} \cdot 12 \mathrm{s}\right)\right)}{0.42 \mathrm{s^{\scriptscriptstyle -1}} \cdot 0.08 \mathrm{s^{\scriptscriptstyle -1}} \cdot \left(\left(12 \mathrm{s}\right)^2\right)} }$

5) Initial Reactant Concentration for Two Steps First Order Irreversible Reaction in Series

 $\mathbf{C}_{\mathrm{A0}} = rac{\mathrm{C_R} \cdot (\mathrm{k_2} - \mathrm{k_I})}{\mathrm{k_I} \cdot (\mathrm{exp}(-\mathrm{k_I} \cdot au) - \mathrm{exp}(-\mathrm{k_2} \cdot au))}$

Open Calculator

 $\boxed{ 89.23855 \mathrm{mol/m^3} = \frac{10 \mathrm{mol/m^3} \cdot (0.08 \mathrm{s^{-1}} - 0.42 \mathrm{s^{-1}})}{0.42 \mathrm{s^{-1}} \cdot (\exp(-0.42 \mathrm{s^{-1}} \cdot 30 \mathrm{s}) - \exp(-0.08 \mathrm{s^{-1}} \cdot 30 \mathrm{s}))} }$

6) Initial Reactant Concentration for Two Steps First Order Reaction for Mixed Flow Reactor 🗗

 $ag{C}_{
m A0} = {
m C}_{
m k1} \cdot (1 + ({
m k}_{
m I} \cdot {
m au}_{
m m}))$

Open Calculator

 $\mathbf{ex} \ 80.332 \mathrm{mol/m^3} = 13.3 \mathrm{mol/m^3} \cdot (1 + (0.42 \mathrm{s^{-1}} \cdot 12 \mathrm{s}))$

7) Intermediate Concentration for First Order Reaction for Mixed Flow Reactor 🗹

 $\mathbf{C}_{\mathrm{R}} = rac{\mathbf{C}_{\mathrm{A0}} \cdot \mathbf{k}_{\mathrm{I}} \cdot \mathbf{ au}_{\mathrm{m}}}{\left(1 + \left(\mathbf{k}_{\mathrm{I}} \cdot \mathbf{ au}_{\mathrm{m}}
ight)
ight) \cdot \left(1 + \left(\mathbf{k}_{2} \cdot \mathbf{ au}_{\mathrm{m}}
ight)
ight)}$

Open Calculator 🚰

 $\underbrace{\text{as } 34.05866 \text{mol/m}^3 = \frac{80 \text{mol/m}^3 \cdot 0.42 \text{s}^{\text{--}1} \cdot 12 \text{s}}{\left(1 + \left(0.42 \text{s}^{\text{--}1} \cdot 12 \text{s}\right)\right) \cdot \left(1 + \left(0.08 \text{s}^{\text{--}1} \cdot 12 \text{s}\right)\right)} }$

8) Intermediate Concentration for Two Steps First Order Irreversible Reaction in Series

 $C_R = C_{A0} \cdot \left(rac{k_I}{k_2 - k_I}
ight) \cdot \left(\exp(-k_I \cdot au) - \exp(-k_2 \cdot au)
ight)$

Open Calculator

ex

 $8.964735 \text{mol/m}^{_3} = 80 \text{mol/m}^{_3} \cdot \left(\frac{0.42 \text{s}^{_{-1}}}{0.08 \text{s}^{_{-1}} - 0.42 \text{s}^{_{-1}}}\right) \cdot \left(\exp(-0.42 \text{s}^{_{-1}} \cdot 30 \text{s}) - \exp(-0.08 \text{s}^{_{-1}} \cdot 30 \text{s})\right)$

Open Calculator

Open Calculator

Open Calculator

Open Calculator

9) Maximum Intermediate Concentration for First Order Irreversible Reaction in MFR 🛂

 $\mathbf{C}_{\mathrm{R,max}} = rac{\mathbf{C}_{\mathrm{A0}}}{\left(\left(\left(rac{k_2}{k_\mathrm{I}}
ight)^{rac{1}{2}}
ight) + 1
ight)^2}$

$$\boxed{ 80 \text{mol/m}^3 = \frac{80 \text{mol/m}^3}{\left(\left(\left(\frac{0.08 \text{s}^{-1}}{0.42 \text{s}^{-1}} \right)^{\frac{1}{2}} \right) + 1 \right)^2 } }$$

10) Maximum Intermediate Concentration for First Order Irreversible Reaction in Series

$$\mathbf{K} \mathbf{C}_{\mathrm{R,max}} = \mathbf{C}_{\mathrm{A0}} \cdot \left(rac{k_{\mathrm{I}}}{k_{\mathrm{2}}}
ight)^{rac{k_{\mathrm{2}}}{k_{\mathrm{2}}-k_{\mathrm{I}}}}$$

$$= 20 \text{mol/m}^3 = 80 \text{mol/m}^3 \cdot \left(\frac{0.42 \text{s}^{-1}}{0.08 \text{s}^{-1}}\right)^{\frac{0.08 \text{s}^{-1}}{0.08 \text{s}^{-1}-0.42 \text{s}^{-1}}}$$

11) Product Concentration for First Order Reaction for Mixed Flow Reactor

$$\mathbf{C}_{\mathrm{S}} = rac{\mathrm{C}_{\mathrm{A0}} \cdot \mathrm{k}_{\mathrm{I}} \cdot \mathrm{k}_{2} \cdot \left(\mathrm{ au}_{\mathrm{m}}^{2}
ight)}{\left(1 + \left(\mathrm{k}_{\mathrm{I}} \cdot \mathrm{ au}_{\mathrm{m}}
ight)
ight) \cdot \left(1 + \left(\mathrm{k}_{2} \cdot \mathrm{ au}_{\mathrm{m}}
ight)
ight)}$$

12) Rate Constant for First Step First Order Reaction for MFR at Maximum Intermediate Concentration

$$\mathbf{k}_{\mathrm{I}} = rac{1}{\mathrm{k}_{2} \cdot \left(\mathrm{ au}_{\mathrm{R,max}}^{2}
ight)}$$

$$oxed{ex} 0.278458 \mathrm{s}^{ ext{-1}} = rac{1}{0.08 \mathrm{s}^{ ext{-1}} \cdot \left(\left(6.7 \mathrm{s}
ight)^2
ight)}$$

13) Rate Constant for Second Step First Order Reaction for MFR at Maximum Intermediate Concentration

 $\left[\mathbf{k}_{2}=rac{1}{\mathrm{k}_{\mathrm{I}}\cdot\left(au_{\mathrm{R,max}}^{2}
ight)}
ight]$

Open Calculator

14) Reactant Concentration for Two Steps First Order Reaction for Mixed Flow Reactor

 $\mathbf{C}_{k0} = rac{C_{A0}}{1 + (k_{\mathrm{I}} \cdot au_{\mathrm{m}})}$

Open Calculator

$$\boxed{ \textbf{ex} \ | 13.24503 \text{mol/m}^{_3} = \frac{80 \text{mol/m}^{_3}}{1 + (0.42 \text{s}^{_{-1}} \cdot 12 \text{s})} } }$$

15) Time at Maximum Intermediate Concentration for First Order Irreversible Reaction in Series 🗗

 $au_{
m R,max} = rac{\ln\left(rac{k_2}{k_{
m I}}
ight)}{k_2-k_{
m I}}$

Open Calculator 🗗

ex
$$4.877141s = rac{\ln\left(rac{0.08s^{-1}}{0.42s^{-1}}
ight)}{0.08s^{-1} - 0.42s^{-1}}$$

16) Time at Maximum Intermediate Concentration for First Order Irreversible Reaction in Series in MFR

 $au_{
m R,max} = rac{1}{\sqrt{k_{
m I} \cdot k_2}}$

Open Calculator 🗗

$$oxed{ex} 5.455447 \mathrm{s} = rac{1}{\sqrt{0.42 \mathrm{s}^{ ext{-}1} \cdot 0.08 \mathrm{s}^{ ext{-}1}}}$$

Variables Used

- CAO Initial Reactant Concentration for Multiple Rxns (Mole per Cubic Meter)
- Ck0 Reactant Concentration for Zero Order Series Rxn (Mole per Cubic Meter)
- C_{k1} Reactant Concentration for 1st Order Series Rxns (Mole per Cubic Meter)
- C_R Intermediate Concentration for Series Rxn (Mole per Cubic Meter)
- C_{R.max} Maximum Intermediate Concentration (Mole per Cubic Meter)
- C_S Final Product Concentration (Mole per Cubic Meter)
- k₂ Rate Constant for Second Step First Order Reaction (1 Per Second)
- **k**_I Rate Constant for First Step First Order Reaction (1 Per Second)
- T Space Time for PFR (Second)
- Tm Space Time for Mixed Flow Reactor (Second)
- TR,max Time at Maximum Intermediate Concentration (Second)

Constants, Functions, Measurements used

- Function: exp, exp(Number)

 Exponential function
- Function: In, In(Number)

 Natural logarithm function (base e)
- Function: sqrt, sqrt(Number)
 Square root function
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Molar Concentration in Mole per Cubic Meter (mol/m³)

 Molar Concentration Unit Conversion
- Measurement: First Order Reaction Rate Constant in 1 Per Second (s⁻¹)

 First Order Reaction Rate Constant Unit Conversion

Check other formula lists

Basics of Potpourri Reactions Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/1/2024 | 7:48:23 AM UTC

Please leave your feedback here...

