Connectors and Stiffeners in Bridges Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 34 Connectors and Stiffeners in Bridges Formulas

Connectors and Stiffeners in Bridges 전

Number of Connectors in Bridges

1) 28-day Compressive Strength of Concrete given Force in Slab
$f \mathrm{f} \mathrm{f}_{\mathrm{c}}=\frac{\mathrm{P}_{\text {on slab }}}{0.85 \cdot \mathrm{~A}_{\text {concrete }}}$
Open Calculator [
ex $15 \mathrm{MPa}=\frac{245 \mathrm{kN}}{0.85 \cdot 19215.69 \mathrm{~mm}^{2}}$
2) Area of Longitudinal Reinforcing given Force in Slab at Maximum Negative Moments
$f x A_{s t}=\frac{P_{\text {on slab }}}{f_{y}}$
ex $980 \mathrm{~mm}^{2}=\frac{245 \mathrm{kN}}{250 \mathrm{MPa}}$
3) Effective Concrete Area given Force in Slab
$f \mathrm{x} \mathrm{A}_{\text {concrete }}=\frac{\mathrm{P}_{\text {on slab }}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}}$
ex $19215.69 \mathrm{~mm}^{2}=\frac{245 \mathrm{kN}}{0.85 \cdot 15 \mathrm{MPa}}$
4) Force in Slab at Maximum Negative Moments given Minimum Number of Connectors for Bridges U
$f \mathrm{x} \mathrm{P}_{3}=\mathrm{N} \cdot \Phi \cdot \mathrm{S}_{\text {ultimate }}-\mathrm{P}_{\text {on slab }}$
ex $10 \mathrm{kN}=15.0 \cdot 0.85 \cdot 20.0 \mathrm{kN}-245 \mathrm{kN}$
5) Force in Slab at Maximum Negative Moments given Reinforcing Steel Yield Strength
$f x P_{\text {on slab }}=A_{\text {st }} \cdot f_{y}$
ex $245 \mathrm{kN}=980 \mathrm{~mm}^{2} \cdot 250 \mathrm{MPa}$
6) Force in Slab at Maximum Positive Moments given Minimum Number of Connectors for Bridges U
$f \times P_{\text {on slab }}=N \cdot \Phi \cdot S_{\text {ultimate }}-P_{3}$
ex $245 \mathrm{kN}=15.0 \cdot 0.85 \cdot 20.0 \mathrm{kN}-10 \mathrm{kN}$
7) Force in Slab given Effective Concrete Area
$\mathrm{fx} \mathrm{P}_{\text {on slab }}=0.85 \cdot \mathrm{~A}_{\text {concrete }} \cdot \mathrm{f}_{\mathrm{c}}$
ex $245 \mathrm{kN}=0.85 \cdot 19215.69 \mathrm{~mm}^{2} \cdot 15 \mathrm{MPa}$
8) Force in Slab given Number of Connectors in Bridges
$f \times P_{\text {on slab }}=N \cdot \Phi \cdot S_{\text {ultimate }}$
ex $255 \mathrm{kN}=15.0 \cdot 0.85 \cdot 20.0 \mathrm{kN}$
9) Force in Slab given Total Area of Steel Section
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\text {on slab }}=\mathrm{A}_{\text {st }} \cdot \mathrm{f}_{\mathrm{y}}$
ex $245 \mathrm{kN}=980 \mathrm{~mm}^{2} \cdot 250 \mathrm{MPa}$
10) Minimum Number of Connectors for Bridges
$\mathrm{fx} \mathrm{N}=\frac{\mathrm{P}_{\text {on slab }}+\mathrm{P}_{3}}{\Phi \cdot \mathrm{~S}_{\text {ultimate }}}$
Open Calculator
ex $15=\frac{245 \mathrm{kN}+10 \mathrm{kN}}{0.85 \cdot 20.0 \mathrm{kN}}$
11) Number of Connectors in Bridges
fx $\mathrm{N}=\frac{\mathrm{P}_{\text {on slab }}}{\Phi \cdot \mathrm{S}_{\text {ultimate }}}$
ex $14.41176=\frac{245 \mathrm{kN}}{0.85 \cdot 20.0 \mathrm{kN}}$
12) Reduction Factor given Minimum Number of Connectors in Bridges
$\mathrm{fx}_{\mathrm{x}} \Phi=\frac{\mathrm{P}_{\text {on slab }}+\mathrm{P}_{3}}{\mathrm{~S}_{\text {ultimate }} \cdot \mathrm{N}}$
ex $0.85=\frac{245 \mathrm{kN}+10 \mathrm{kN}}{20.0 \mathrm{kN} \cdot 15.0}$
13) Reduction Factor given Number of Connectors in Bridges
$\mathrm{fx} \Phi=\frac{\mathrm{P}_{\text {on slab }}}{\mathrm{N} \cdot \mathrm{S}_{\text {ultimate }}}$
ex $0.816667=\frac{245 \mathrm{kN}}{15.0 \cdot 20.0 \mathrm{kN}}$
14) Reinforcing Steel Yield Strength given Force in Slab at Maximum Negative Moments
$f \mathrm{f} \mathrm{f}_{\mathrm{y}}=\frac{\mathrm{P}_{\text {on slab }}}{\mathrm{A}_{\text {st }}}$
ex $250 \mathrm{MPa}=\frac{245 \mathrm{kN}}{980 \mathrm{~mm}^{2}}$
15) Steel Yield Strength given Total Area of Steel Section
$f x f_{y}=\frac{P_{\text {on slab }}}{A_{\text {st }}}$
ex $250 \mathrm{MPa}=\frac{245 \mathrm{kN}}{980 \mathrm{~mm}^{2}}$
16) Total Area of Steel Section given Force in Slab
$f x \mathrm{~A}_{\text {st }}=\frac{\mathrm{P}_{\text {on slab }}}{\mathrm{f}_{\mathrm{y}}}$
ex $980 \mathrm{~mm}^{2}=\frac{245 \mathrm{kN}}{250 \mathrm{MPa}}$
17) Ultimate Shear Connector Strength given Minimum Number of Connectors in Bridges
$f \mathrm{fx} \mathrm{S}_{\text {ultimate }}=\frac{\mathrm{P}_{\text {on slab }}+\mathrm{P}_{3}}{\Phi \cdot \mathrm{~N}}$
Open Calculator
ex $20 \mathrm{kN}=\frac{245 \mathrm{kN}+10 \mathrm{kN}}{0.85 \cdot 15.0}$
18) Ultimate Shear Connector Strength given Number of Connectors in Bridges
fx $\mathrm{S}_{\text {ultimate }}=\frac{\mathrm{P}_{\text {on slab }}}{\mathrm{N} \cdot \Phi}$
ex $19.21569 \mathrm{kN}=\frac{245 \mathrm{kN}}{15.0 \cdot 0.85}$

Shear Strength Design for Bridges

19) Shear Capacity for Flexural Members
$\mathrm{fx} \mathrm{V}_{\mathrm{u}}=0.58 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{d} \cdot \mathrm{bw} \cdot \mathrm{C}$
ex $7830 \mathrm{kN}=0.58 \cdot 250 \mathrm{MPa} \cdot 200 \mathrm{~mm} \cdot 300 \mathrm{~mm} \cdot 0.90$
20) Shear Capacity for Girders with Transverse Stiffeners
$f \mathrm{f} \mathrm{V}_{\mathrm{u}}=0.58 \cdot \mathrm{f}_{\mathrm{y}} \cdot \mathrm{d} \cdot \mathrm{bw} \cdot\left(\mathrm{C}+\left(\frac{1-\mathrm{C}}{\left(1.15 \cdot\left(1+\left(\frac{\mathrm{a}}{\mathrm{H}}\right)^{2}\right)^{0.5}\right)}\right)\right)$
$8364.942 \mathrm{kN}=0.58 \cdot 250 \mathrm{MPa} \cdot 200 \mathrm{~mm} \cdot 300 \mathrm{~mm}$.

$$
\left(0.90+\left(\frac{1-0.90}{\left(1.15 \cdot\left(1+\left(\frac{5000 \mathrm{~mm}}{5000 \mathrm{~mm}}\right)^{2}\right)^{0.5}\right)}\right)\right)
$$

Ultimate Shear Strength of Connectors in Bridges

21) 28-day Compressive Strength given Ultimate Shear Connector Strength for Welded Studs
$\mathrm{fx} \mathrm{f}_{\mathrm{c}}=\frac{\left(\frac{\mathrm{S}_{\text {ultimate }}}{0.4 \cdot \mathrm{~d}_{\text {stud }} \cdot d_{\text {stud }}}\right)^{2}}{\mathrm{E}}$
ex $14.90116 \mathrm{MPa}=\frac{\left(\frac{20.0 \mathrm{kN}}{0.4 \cdot 64 \mathrm{~mm} \cdot 64 \mathrm{~mm}}\right)^{2}}{10.0 \mathrm{MPa}}$
22) 28-day Compressive Strength of Concrete given Ultimate Shear Connector Strength for Channels
$\mathrm{fx}_{\mathrm{x}} \mathrm{f}_{\mathrm{c}}=\left(\frac{\text { Sultimate }}{17.4 \cdot \mathrm{w} \cdot\left(\mathrm{h}+\frac{\mathrm{t}}{2}\right)}\right)^{2}$
$\operatorname{ex} 14.97782 \mathrm{MPa}=\left(\frac{20.0 \mathrm{kN}}{17.4 \cdot 1500 \mathrm{~mm} \cdot\left(188 \mathrm{~mm}+\frac{20 \mathrm{~mm}}{2}\right)}\right)^{2}$
23) Average Channel Flange Thickness given Ultimate Shear Connector Strength for Channels
$\mathrm{fx} \mathrm{h}=\frac{\mathrm{S}_{\text {ultimate }}}{17.4 \cdot \mathrm{w} \cdot\left(\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}\right)}-\frac{\mathrm{t}}{2}$
ex $187.8536 \mathrm{~mm}=\frac{20.0 \mathrm{kN}}{17.4 \cdot 1500 \mathrm{~mm} \cdot\left((15 \mathrm{MPa})^{0.5}\right)}-\frac{20 \mathrm{~mm}}{2}$
24) Channel Length given Ultimate Shear Connector Strength for Channels
$\mathrm{fx} \mathrm{w}=\frac{\mathrm{S}_{\text {ultimate }}}{17.4 \cdot \sqrt{\mathrm{f}_{\mathrm{c}}} \cdot\left(\mathrm{h}+\frac{\mathrm{t}}{2}\right)}$
$\mathrm{ex} 1498.891 \mathrm{~mm}=\frac{20.0 \mathrm{kN}}{17.4 \cdot \sqrt{15 \mathrm{MPa}} \cdot\left(188 \mathrm{~mm}+\frac{20 \mathrm{~mm}}{2}\right)}$
25) Channel Web Thickness given Ultimate Shear Connector Strength for Channels
$\mathrm{fx} \mathrm{t}=\left(\left(\frac{\mathrm{S}_{\text {ultimate }}}{17.4 \cdot \mathrm{w} \cdot \sqrt{\mathrm{f}_{\mathrm{c}}}}\right)-\mathrm{h}\right) \cdot 2$
Open Calculator
ex $19.70711 \mathrm{~mm}=\left(\left(\frac{20.0 \mathrm{kN}}{17.4 \cdot 1500 \mathrm{~mm} \cdot \sqrt{15 \mathrm{MPa}}}\right)-188 \mathrm{~mm}\right) \cdot 2$
26) Diameter of Connector given Ultimate Shear Connector Strength for Welded Studs
$f \mathrm{fx} \mathrm{d}_{\text {stud }}=\sqrt{\frac{S_{\text {ultimate }}}{0.4 \cdot \sqrt{\mathrm{E} \cdot \mathrm{f}_{\mathrm{c}}}}}$
ex $63.89431 \mathrm{~mm}=\sqrt{\frac{20.0 \mathrm{kN}}{0.4 \cdot \sqrt{10.0 \mathrm{MPa} \cdot 15 \mathrm{MPa}}}}$
27) Elastic Modulus of Concrete given Ultimate Shear Connector Strength for Welded Studs §
$\mathrm{fx}_{\mathrm{x}} \mathrm{E}=\left(\frac{\left(\frac{\mathrm{S}_{\text {ultimate }}}{0.4 \cdot \mathrm{~d}_{\text {stud }} \cdot \mathrm{d}_{\text {stud }}}\right)^{2}}{\mathrm{f}_{\mathrm{c}}}\right)$
ex $9.934107 \mathrm{MPa}=\left(\frac{\left(\frac{20.0 \mathrm{kN}}{0.4 \cdot 64 \mathrm{~mm} \cdot 64 \mathrm{~mm}}\right)^{2}}{15 \mathrm{MPa}}\right)$
28) Ultimate Shear Connector Strength for Channels

凹

$f \mathbf{x} S_{\text {ultimate }}=17.4 \cdot \mathrm{w} \cdot\left(\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}\right) \cdot\left(\mathrm{h}+\frac{\mathrm{t}}{2}\right)$
ex $20.0148 \mathrm{kN}=17.4 \cdot 1500 \mathrm{~mm} \cdot\left((15 \mathrm{MPa})^{0.5}\right) \cdot\left(188 \mathrm{~mm}+\frac{20 \mathrm{~mm}}{2}\right)$
29) Ultimate Shear Strength for Welded Studs
$f \times \mathrm{S}_{\text {ultimate }}=0.4 \cdot \mathrm{~d}_{\text {stud }} \cdot \mathrm{d}_{\text {stud }} \cdot \sqrt{\mathrm{E} \cdot \mathrm{f}_{\mathrm{c}}}$
ex $20.06622 \mathrm{kN}=0.4 \cdot 64 \mathrm{~mm} \cdot 64 \mathrm{~mm} \cdot \sqrt{10.0 \mathrm{MPa} \cdot 15 \mathrm{MPa}}$

Stiffeners on Bridge Girders

30) Actual Stiffener Spacing for Minimum Moment of Inertia of Transverse Stiffener
$f \mathbf{x} \mathrm{a}_{\mathrm{o}}=\frac{\mathrm{I}}{\mathrm{t}^{3} \cdot \mathrm{~J}}$
ex $61.6 \mathrm{~mm}=\frac{12320 \mathrm{~mm}^{4}}{(20 \mathrm{~mm})^{3} \cdot 0.025}$

31）Minimum Moment of Inertia of Transverse Stiffener
$f \mathrm{fx}=\mathrm{a}_{\mathrm{o}} \cdot \mathrm{t}^{3} \cdot\left(2.5 \cdot\left(\frac{\mathrm{D}^{2}}{\mathrm{a}_{\mathrm{o}}^{2}}\right)-2\right)$
ex $10000 \mathrm{~mm}^{4}=50 \mathrm{~mm} \cdot(20 \mathrm{~mm})^{3} \cdot\left(2.5 \cdot\left(\frac{(45 \mathrm{~mm})^{2}}{(50 \mathrm{~mm})^{2}}\right)-2\right)$
32）Web Thickness for Minimum Moment of Inertia of Transverse Stiffener
$f \mathbf{x} t=\left(\frac{I}{a_{o} \cdot\left(\left(2.5 \cdot \frac{D^{2}}{a_{o}^{2}}\right)-2\right)}\right)^{\frac{1}{3}}$
ex $21.44043 \mathrm{~mm}=\left(\frac{12320 \mathrm{~mm}^{4}}{50 \mathrm{~mm} \cdot\left(\left(2.5 \cdot \frac{(45 \mathrm{~mm})^{2}}{(50 \mathrm{~mm})^{2}}\right)-2\right)}\right)^{\frac{1}{3}}$

Longitudinal Stiffeners［⿶凵

33）Moment of Inertia of Longitudinal Stiffeners
$\mathrm{fx} \mathrm{I}=\mathrm{D} \cdot \mathrm{t}^{3} \cdot\left(2.4 \cdot\left(\frac{\mathrm{~A}_{\mathrm{o}}^{2}}{\mathrm{D}^{2}}\right)-0.13\right)$
ex $14640 \mathrm{~mm}^{4}=45 \mathrm{~mm} \cdot(20 \mathrm{~mm})^{3} \cdot\left(2.4 \cdot\left(\frac{(12 \mathrm{~mm})^{2}}{(45 \mathrm{~mm})^{2}}\right)-0.13\right)$
34) Web Thickness given Moment of Inertia of Longitudinal Stiffeners
$f \mathbf{x} t=\left(\frac{I}{D \cdot\left(2.4 \cdot\left(\frac{A_{o}^{2}}{D^{2}}\right)-0.13\right)}\right)^{\frac{1}{3}}$
$\mathrm{ex} 18.88223 \mathrm{~mm}=\left(\frac{12320 \mathrm{~mm}^{4}}{45 \mathrm{~mm} \cdot\left(2.4 \cdot\left(\frac{(12 \mathrm{~mm})^{2}}{(45 \mathrm{~mm})^{2}}\right)-0.13\right)}\right)^{\frac{1}{3}}$

Variables Used

- a Clear Distance between Transverse Stiffeners (Millimeter)
- Aconcrete Effective Concrete Area (Square Millimeter)
- $\mathbf{a}_{\mathbf{o}}$ Actual Stiffener Spacing (Millimeter)
- $\mathbf{A}_{\mathbf{0}}$ Actual Distance between Transverse Stiffeners (Millimeter)
- $\mathbf{A}_{\mathbf{s t}}$ Area of Steel Reinforcement (Square Millimeter)
- bw Breadth of Web (Millimeter)
- C Shear Buckling Coefficient C
- d Depth of Cross Section (Millimeter)
- D Clear Distance between Flanges (Millimeter)
- $\mathbf{d}_{\text {stud }}$ Stud Diameter (Millimeter)
- E Modulus Elasticity of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{c}} 28$ Day Compressive Strength of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{y}}$ Yield Strength of Steel (Megapascal)
- h Average Flange Thickness (Millimeter)
- H Cross Section's Height (Millimeter)
- I Moment of Inertia (Millimeter ${ }^{4}$)
- J Constant
- \mathbf{N} No of Connector in Bridge
- \mathbf{P}_{3} Force in Slab at Negative Moment Point (Kilonewton)
- $\mathbf{P}_{\text {on slab }}$ Slab Force (Kilonewton)
- $\mathrm{S}_{\text {ultimate }}$ Ultimate Shear Connector Stress (Kilonewton)
- t Web Thickness (Millimeter)
- $\mathbf{V}_{\mathbf{u}}$ Shear Capacity (Kilonewton)
- w Channel Length (Millimeter)
- Φ Reduction Factor

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm²)

Area Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion U

- Measurement: Second Moment of Area in Millimeter ${ }^{4}\left(\mathrm{~mm}^{4}\right)$

Second Moment of Area Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Composite Construction in Highway Bridges Formulas \qquad
- Connectors and Stiffeners in Bridges Formulas $\boxed{\square}$
- Load Factor Design (LFD) Formulas
- Load, Stress and Fasteners Formulas
- Suspension Cables Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

