
calculatoratoz.com

unitsconverters.com

Three-Dimensional Incompressible Flow Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 29 Three-Dimensional Incompressible Flow Formulas

Three-Dimensional Incompressible Flow ©

3D Elementry Flows ©

1) Doublet Strength for 3D Incompressible Flow
$\mathbf{f x} \mu=-\frac{4 \cdot \pi \cdot \phi \cdot r^{2}}{\cos (\theta)}$
Open Calculator
ex $9463.181 \mathrm{~m}^{3} / \mathrm{s}=-\frac{4 \cdot \pi \cdot-75.72 \mathrm{~m}^{2} / \mathrm{s} \cdot(2.758 \mathrm{~m})^{2}}{\cos (0.7 \mathrm{rad})}$
2) Radial Coordinate for 3D Doublet Flow given Velocity Potential \longleftarrow

$\mathrm{ex} 8.484972 \mathrm{~m}=\sqrt{\frac{\text { modulus }\left(9463 \mathrm{~m}^{3} / \mathrm{s}\right) \cdot \cos (0.7 \mathrm{rad})}{4 \cdot \pi \cdot \operatorname{modulus}\left(-8 \mathrm{~m}^{2} / \mathrm{s}\right)}}$
3) Radial Coordinate for 3D Source Flow given Radial Velocity

Open Calculator
$\mathrm{ex} 2.756995 \mathrm{~m}=\sqrt{\frac{277 \mathrm{~m}^{2} / \mathrm{s}}{4 \cdot \pi \cdot 2.9 \mathrm{~m} / \mathrm{s}}}$
4) Radial Coordinate for 3D Source Flow given Velocity Potential
$f x=-\frac{\Lambda}{4 \cdot \pi \cdot \phi_{s}}$
Open Calculator
ex $2.75537 \mathrm{~m}=-\frac{277 \mathrm{~m}^{2} / \mathrm{s}}{4 \cdot \pi \cdot-8 \mathrm{~m}^{2} / \mathrm{s}}$
5) Radial Velocity for 3D Incompressible Source Flow
fx $\mathrm{V}_{\mathrm{r}}=\frac{\Lambda}{4 \cdot \pi \cdot \mathrm{r}^{2}}$
Open Calculator
ex $2.897887 \mathrm{~m} / \mathrm{s}=\frac{277 \mathrm{~m}^{2} / \mathrm{s}}{4 \cdot \pi \cdot(2.758 \mathrm{~m})^{2}}$
6) Source Strength for 3D Incompressible Source Flow given Radial Velocity
$\mathrm{fx}_{\mathrm{x}} \Lambda=4 \cdot \pi \cdot \mathrm{~V}_{\mathrm{r}} \cdot \mathrm{r}^{2}$
ex $277.202 \mathrm{~m}^{2} / \mathrm{s}=4 \cdot \pi \cdot 2.9 \mathrm{~m} / \mathrm{s} \cdot(2.758 \mathrm{~m})^{2}$
7) Source Strength for 3D Incompressible Source Flow given Velocity Potential
$\mathrm{fx} \Lambda=-4 \cdot \pi \cdot \phi_{\mathrm{S}} \cdot \mathrm{r}$
Open Calculator
ex $277.2644 \mathrm{~m}^{2} / \mathrm{s}=-4 \cdot \pi \cdot-8 \mathrm{~m}^{2} / \mathrm{s} \cdot 2.758 \mathrm{~m}$
8) Velocity Potential for 3D Incompressible Doublet Flow
$\mathrm{fx} \phi=-\frac{\mu \cdot \cos (\theta)}{4 \cdot \pi \cdot \mathrm{r}^{2}}$
Open Calculator
ex $-75.71855 \mathrm{~m}^{2} / \mathrm{s}=-\frac{9463 \mathrm{~m}^{3} / \mathrm{s} \cdot \cos (0.7 \mathrm{rad})}{4 \cdot \pi \cdot(2.758 \mathrm{~m})^{2}}$
9) Velocity Potential for 3D Incompressible Source Flow
$\mathrm{fx} \phi_{\mathrm{s}}=-\frac{\Lambda}{4 \cdot \pi \cdot \mathrm{r}}$
ex $-7.992371 \mathrm{~m}^{2} / \mathrm{s}=-\frac{277 \mathrm{~m}^{2} / \mathrm{s}}{4 \cdot \pi \cdot 2.758 \mathrm{~m}}$

Flow over Sphere

Pressure Coefficient

10) Polar Coordinate given Surface Pressure Coefficient
$f \mathbf{x} \theta=a \sin \left(\sqrt{\frac{4}{9} \cdot\left(1-\mathrm{C}_{\mathrm{p}}\right)}\right)$
Open Calculator
$\operatorname{ex} 0.700096 \mathrm{rad}=a \sin \left(\sqrt{\frac{4}{9} \cdot(1-0.066)}\right)$
11) Surface Pressure Coefficient for Flow over Sphere
$\mathrm{fx} \mathrm{C}_{\mathrm{p}}=1-\frac{9}{4} \cdot(\sin (\theta))^{2}$
Open Calculator
ex $0.066213=1-\frac{9}{4} \cdot(\sin (0.7 \mathrm{rad}))^{2}$

Radial Velocity

12) Doublet Strength given Radial Velocity
$\mathbf{f x} \mu=2 \cdot \pi \cdot \mathrm{r}^{3} \cdot\left(\mathrm{~V}_{\infty}+\frac{\mathrm{V}_{\mathrm{r}}}{\cos (\theta)}\right)$
Open Calculator
ex $9463.166 \mathrm{~m}^{3} / \mathrm{s}=2 \cdot \pi \cdot(2.758 \mathrm{~m})^{3} \cdot\left(68 \mathrm{~m} / \mathrm{s}+\frac{2.9 \mathrm{~m} / \mathrm{s}}{\cos (0.7 \mathrm{rad})}\right)$

13) Freestream Velocity given Radial Velocity \longleftarrow

$\mathbf{f x}_{\mathrm{x}} \mathrm{V}_{\infty}=\frac{\mu}{2 \cdot \pi \cdot \mathrm{r}^{3}}-\frac{\mathrm{V}_{\mathrm{r}}}{\cos (\theta)}$
ex $67.99874 \mathrm{~m} / \mathrm{s}=\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot \pi \cdot(2.758 \mathrm{~m})^{3}}-\frac{2.9 \mathrm{~m} / \mathrm{s}}{\cos (0.7 \mathrm{rad})}$
14) Polar Coordinate given Radial Velocity
$\mathbf{f x} \theta=a \cos \left(\frac{\mathrm{~V}_{\mathrm{r}}}{\frac{\mu}{2 \cdot \pi \cdot \mathrm{r}^{3}}-\mathrm{V}_{\infty}}\right)$
ex $0.699604 \mathrm{rad}=a \cos \left(\frac{2.9 \mathrm{~m} / \mathrm{s}}{\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot \pi \cdot(2.758 \mathrm{~m})^{3}}-68 \mathrm{~m} / \mathrm{s}}\right)$
15) Radial Coordinate given Radial Velocity
$f_{\mathbf{x}} \mathrm{r}=\left(\frac{\mu}{2 \cdot \pi \cdot\left(\mathrm{~V}_{\infty}+\frac{\mathrm{V}_{\mathrm{r}}}{\cos (\theta)}\right)}\right)^{\frac{1}{3}}$
Open Calculator
$\boldsymbol{e x} 2.757984 \mathrm{~m}=\left(\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot \pi \cdot\left(68 \mathrm{~m} / \mathrm{s}+\frac{2.9 \mathrm{~m} / \mathrm{s}}{\cos (0.7 \mathrm{rad})}\right)}\right)^{\frac{1}{3}}$
16) Radial Velocity for Flow over Sphere
$\mathbf{f f x}_{\mathrm{x}}=-\left(\mathrm{V}_{\infty}-\frac{\mu}{2 \cdot \pi \cdot \mathrm{r}^{3}}\right) \cdot \cos (\theta)$
Open Calculator
$\mathrm{ex} 2.899034 \mathrm{~m} / \mathrm{s}=-\left(68 \mathrm{~m} / \mathrm{s}-\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot \pi \cdot(2.758 \mathrm{~m})^{3}}\right) \cdot \cos (0.7 \mathrm{rad})$

Stagnation Point

17) Doublet Strength given Radial Coordinate of Stagnation Point
$\mathrm{fx} \mu=2 \cdot \pi \cdot \mathrm{~V}_{\infty} \cdot \mathrm{R}_{\mathrm{s}}^{3}$
Open Calculator
ex $9469.87 \mathrm{~m}^{3} / \mathrm{s}=2 \cdot \pi \cdot 68 \mathrm{~m} / \mathrm{s} \cdot(2.809 \mathrm{~m})^{3}$
18) Freestream Velocity at Stagnation Point for Flow over Sphere
f. $\mathrm{V}_{\infty}=\frac{\mu}{2 \cdot \pi \cdot \mathrm{R}_{\mathrm{s}}^{3}}$
ex $67.95067 \mathrm{~m} / \mathrm{s}=\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot \pi \cdot(2.809 \mathrm{~m})^{3}}$
19) Radial Coordinate of Stagnation Point for Flow over Sphere
$\mathrm{fx}_{\mathrm{x}} \mathrm{r}=\left(\frac{\mu}{2 \cdot \pi \cdot \mathrm{~V}_{\infty}}\right)^{\frac{1}{3}}$
Open Calculator
$\operatorname{ex} 2.808321 \mathrm{~m}=\left(\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot \pi \cdot 68 \mathrm{~m} / \mathrm{s}}\right)^{\frac{1}{3}}$

Surface Velocity

20) Freestream Velocity given Maximum Surface Velocity
$f_{\mathrm{x}} \mathrm{V}_{\infty}=\frac{2}{3} \cdot \mathrm{~V}_{\mathrm{s}, \max }$
Open Calculator
ex $68 \mathrm{~m} / \mathrm{s}=\frac{2}{3} \cdot 102 \mathrm{~m} / \mathrm{s}$
21) Freestream Velocity given Surface Velocity for Flow over Sphere
$\mathrm{fx} \mathrm{V}_{\infty}=\frac{2}{3} \cdot \frac{\mathrm{~V}_{\theta}}{\sin (\theta)}$
Open Calculator
ex $68.29989 \mathrm{~m} / \mathrm{s}=\frac{2}{3} \cdot \frac{66 \mathrm{~m} / \mathrm{s}}{\sin (0.7 \mathrm{rad})}$
22) Maximum Surface Velocity for Flow over Sphere
$f_{\mathrm{fx}} \mathrm{V}_{\mathrm{s}, \text { max }}=\frac{3}{2} \cdot \mathrm{~V}_{\infty}$
ex $102 \mathrm{~m} / \mathrm{s}=\frac{3}{2} \cdot 68 \mathrm{~m} / \mathrm{s}$
23) Polar Coordinate given Surface Velocity for Flow over Sphere
$f \mathbf{x} \theta=a \sin \left(\frac{2}{3} \cdot \frac{\mathrm{~V}_{\theta}}{\mathrm{V}_{\infty}}\right)$
ex $0.703721 \mathrm{rad}=a \sin \left(\frac{2}{3} \cdot \frac{66 \mathrm{~m} / \mathrm{s}}{68 \mathrm{~m} / \mathrm{s}}\right)$
24) Surface Velocity for Incompressible Flow over Sphere
fx $\mathrm{V}_{\theta}=\frac{3}{2} \cdot \mathrm{~V}_{\infty} \cdot \sin (\theta)$
ex $65.7102 \mathrm{~m} / \mathrm{s}=\frac{3}{2} \cdot 68 \mathrm{~m} / \mathrm{s} \cdot \sin (0.7 \mathrm{rad})$

Tangential Velocity

25) Doublet Strength given Tangential Velocity

$\mathbf{f x} \mu=4 \cdot \pi \cdot \mathrm{r}^{3} \cdot\left(\frac{\mathrm{~V}_{\theta}}{\sin (\theta)}-\mathrm{V}_{\infty}\right)$

Open Calculator

ex $9081.966 \mathrm{~m}^{3} / \mathrm{s}=4 \cdot \pi \cdot(2.758 \mathrm{~m})^{3} \cdot\left(\frac{66 \mathrm{~m} / \mathrm{s}}{\sin (0.7 \mathrm{rad})}-68 \mathrm{~m} / \mathrm{s}\right)$
26) Freestream Velocity given Tangential Velocity
$f \mathbf{x} \mathrm{~V}_{\infty}=\frac{\mathrm{V}_{\theta}}{\sin (\theta)}-\frac{\mu}{4 \cdot \pi \cdot \mathrm{r}^{3}}$
Open Calculator
ex $66.55466 \mathrm{~m} / \mathrm{s}=\frac{66 \mathrm{~m} / \mathrm{s}}{\sin (0.7 \mathrm{rad})}-\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{4 \cdot \pi \cdot(2.758 \mathrm{~m})^{3}}$
27) Polar Coordinate given Tangential Velocity
$f \mathbf{f x} \theta=a \sin \left(\frac{\mathrm{~V}_{\theta}}{\mathrm{V}_{\infty}+\frac{\mu}{4 \cdot \pi \cdot \mathrm{r}^{3}}}\right)$
ex $0.688339 \mathrm{rad}=a \sin \left(\frac{66 \mathrm{~m} / \mathrm{s}}{68 \mathrm{~m} / \mathrm{s}+\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{4 \cdot \pi \cdot(2.758 \mathrm{~m})^{3}}}\right)$

28) Radial Coordinate given Tangential Velocity

Open Calculator

$\operatorname{ex} 2.796043 \mathrm{~m}=\left(\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{4 \cdot \pi \cdot\left(\frac{66 \mathrm{~m} / \mathrm{s}}{\sin (0.7 \mathrm{rad})}-68 \mathrm{~m} / \mathrm{s}\right)}\right)^{\frac{1}{3}}$
29) Tangential Velocity for Flow over Sphere
$f \mathbf{x} \mathrm{~V}_{\theta}=\left(\mathrm{V}_{\infty}+\frac{\mu}{4 \cdot \pi \cdot \mathrm{r}^{3}}\right) \cdot \sin (\theta)$
ex $66.93112 \mathrm{~m} / \mathrm{s}=\left(68 \mathrm{~m} / \mathrm{s}+\frac{9463 \mathrm{~m}^{3} / \mathrm{s}}{4 \cdot \pi \cdot(2.758 \mathrm{~m})^{3}}\right) \cdot \sin (0.7 \mathrm{rad})$

Variables Used

- $\mathbf{C}_{\mathbf{p}}$ Pressure Coefficient
- r Radial Coordinate (Meter)
- $\mathbf{R}_{\mathbf{S}}$ Radius of Sphere (Meter)
- \mathbf{V}_{∞} Freestream Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{r}}$ Radial Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{s}, \text { max }}$ Maximum Surface Velocity (Meter per Second)
- $\mathbf{V}_{\boldsymbol{\theta}}$ Tangential Velocity (Meter per Second)
- $\boldsymbol{\theta}$ Polar Angle (Radian)
- Λ Source Strength (Square Meter per Second)
- $\boldsymbol{\mu}$ Doublet Strength (Cubic Meter per Second)
- $\boldsymbol{\phi}$ Velocity Potential (Square Meter per Second)
- $\boldsymbol{\phi}_{\mathbf{s}}$ Source Velocity Potential (Square Meter per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: modulus, modulus Modulus of a number is the remainder when that number is divided by another number.
- Function: sin, $\sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angle in Radian (rad)

Angle Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Velocity Potential in Square Meter per Second ($\mathrm{m}^{2} / \mathrm{s}$) Velocity Potential Unit Conversion

Check other formula lists

- Fundamentals of Inviscid and Incompressible Flow Formulas
- Two-Dimensional Incompressible Flow Formulas
- Three-Dimensional Incompressible Flow Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

