

Stability Analysis of Infinite Slopes in Prism Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Stability Analysis of Infinite Slopes in Prism **Formulas**

Stability Analysis of Infinite Slopes in Prism @

1) Angle of Inclination given Horizontal Length of Prism

$$I = a \cos \left(rac{ ext{L}}{ ext{b}}
ight)$$

Open Calculator 2

$$\boxed{\textbf{ex}} \left[78.46304 \degree = a \cos \left(\frac{2\text{m}}{10\text{m}} \right) \right]$$

2) Angle of Inclination given Vertical Stress on Surface of Prism

$$ag{I} = a \cos igg(rac{\sigma_{ ext{vertical}}}{\mathbf{z} \cdot \mathbf{\gamma}} igg)$$

Open Calculator 2

$$oxed{ ext{89.98939}^{\circ}=a\cosigg(rac{10 ext{Pa}}{3 ext{m}\cdot18 ext{kN/m}^{3}}igg)}$$

3) Angle of Inclination given Volume per Unit Length of Prism 🗗

$$I = a \cos \left(rac{\mathrm{V_l}}{\mathrm{z \cdot b}}
ight)$$

Open Calculator

$$oxed{ex} 80.40593^\circ = a\cosigg(rac{5\mathrm{m}^2}{3\mathrm{m}\cdot 10\mathrm{m}}igg)$$

4) Angle of Inclination given Weight of Soil Prism

$$I = a \cos igg(rac{\mathrm{W}}{\gamma \cdot \mathrm{z} \cdot \mathrm{b}}igg)$$

$$\mathbf{x} = a \cos\left(\frac{\mathbf{y} \cdot \mathbf{z} \cdot \mathbf{b}}{\mathbf{y} \cdot \mathbf{z} \cdot \mathbf{b}}\right)$$

$$oxed{ex} \left[79.32807^{\circ} = a\cosigg(rac{100 \mathrm{kg}}{18 \mathrm{kN/m^3 \cdot 3m \cdot 10m}}igg)
ight]$$

5) Cohesion given Factor of Safety for Cohesive Soil

fx

Open Calculator 🗗

$$\mathbf{c} = \left(\mathbf{f_s} - \left(rac{ an\left(rac{\phi \cdot \pi}{180}
ight)}{ an\left(rac{\mathbf{I} \cdot \pi}{180}
ight)}
ight)
ight) \cdot \left(\gamma \cdot \mathbf{z} \cdot \cos\left(rac{\mathbf{I} \cdot \pi}{180}
ight) \cdot \sin\left(rac{\mathbf{I} \cdot \pi}{180}
ight)
ight)$$

ex

$$2.926924 \text{kPa} = \left(2.8 - \left(\frac{\tan\left(\frac{46^\circ \cdot \pi}{180}\right)}{\tan\left(\frac{80^\circ \cdot \pi}{180}\right)}\right)\right) \cdot \left(18 \text{kN/m}^3 \cdot 3 \text{m} \cdot \cos\left(\frac{80^\circ \cdot \pi}{180}\right) \cdot \sin\left(\frac{80^\circ \cdot \pi}{180}\right)\right)$$

6) Depth of Prism given Factor of Safety for Cohesive Soil

 $\mathbf{f}_{\mathbf{z}} = rac{c_{\mathrm{u}}}{\left(f_{\mathrm{s}} - \left(rac{ an((\Phi_{\mathrm{i}}))}{ an((\mathrm{I}))}
ight)
ight) \cdot \gamma \cdot \cos((\mathrm{I})) \cdot \sin((\mathrm{I}))}$

Open Calculator

7) Depth of Prism given Vertical Stress on Surface of Prism

 $\mathbf{z} = rac{\sigma_{ ext{vertical}}}{\gamma \cdot \cos((I))}$

Open Calculator

$$\boxed{ \text{ex} \ \, 3.199317 \text{m} = \frac{10 \text{Pa}}{18 \text{kN/m}^3 \cdot \cos((80^\circ))} }$$

8) Depth of Prism given Volume per Unit Length of Prism

 $\mathbf{z} = rac{V_1}{\mathbf{b} \cdot \cos((\mathbf{I}))}$

$$= \frac{5 \text{m}^2}{10 \text{m} \cdot \cos((80^\circ))}$$

9) Depth of Prism given Weight of Soil Prism 🗗

 $\mathbf{z} = rac{\mathrm{W}}{\gamma \cdot \mathrm{b} \cdot \mathrm{cos}(\mathrm{(I)})}$

Open Calculator 🗗

10) Factor of Safety for Cohesive Soil given Cohesion

 $\mathbf{f_s} = \left(rac{c_{\mathrm{u}}}{\gamma \cdot \mathbf{z} \cdot \cos((\mathbf{I})) \cdot \sin((\mathbf{I}))}
ight) + \left(rac{ an((\Phi_{\mathrm{i}}))}{ an((\mathbf{I}))}
ight)$

Open Calculator 🗗

$$\boxed{ 1.410703 = \left(\frac{10 \text{Pa}}{18 \text{kN/m}^3 \cdot 3 \text{m} \cdot \cos((80°)) \cdot \sin((80°))} \right) + \left(\frac{\tan((82.87°))}{\tan((80°))} \right) }$$

11) Horizontal Length of Prism

fx $L = b \cdot \cos((I))$

Open Calculator

$$\mathbf{ex} \left[1.736482 \mathrm{m} = 10 \mathrm{m} \cdot \cos((80^{\circ})) \right]$$

12) Inclined Length along Slope given Horizontal Length of Prism 🖸

 $b = rac{L}{\cos((I))}$

Open Calculator C

13) Inclined Length along Slope given Vertical Stress on Surface of Prism

 $b = rac{W}{\sigma_z} \cdot 5$

14) Inclined Length along Slope given Volume Per Unit Length of Prism

 $\mathbf{b} = rac{\mathrm{V_l}}{\mathrm{z} \cdot \mathrm{cos}(\mathrm{(I)})}$

Open Calculator

$$= \frac{5m^2}{3m \cdot \cos((80^\circ))}$$

15) Inclined Length along Slope given Weight of Soil Prism

 \mathbf{f} $\mathbf{b} = rac{W}{\gamma \cdot \mathbf{z} \cdot \cos((\mathbf{I}))}$

Open Calculator

$$\boxed{ 10.66439 m = \frac{100 kg}{18 kN/m^3 \cdot 3m \cdot \cos((80^\circ))} }$$

16) Unit Weight of Soil given Factor of Safety for Cohesive Soil

 $\gamma = rac{\mathrm{c}}{\left(\mathrm{f_s} - \left(rac{ an\left(rac{\phi\cdot\pi}{180}
ight)}{ an\left(rac{\mathrm{I}\cdot\pi}{180}
ight)}
ight)
ight)\cdot\mathrm{z}\cdot\mathrm{cos}\left(rac{\mathrm{I}\cdot\pi}{180}
ight)\cdot\mathrm{sin}\left(rac{\mathrm{I}\cdot\pi}{180}
ight)}$

Open Calculator 🗗

17) Unit Weight of Soil given Vertical Stress on Surface of Prism 🚰

$$\gamma = rac{\sigma_{
m vertical}}{\mathbf{z} \cdot \cos((I))}$$

$$=$$
 19.1959kN/m³ = $\frac{10 Pa}{3 m \cdot \cos((80°))}$

Open Calculator 2

Open Calculator

Open Calculator

Open Calculator

18) Unit Weight of Soil given Weight of Soil Prism

 $\gamma = \frac{\mathbf{v}}{\mathbf{z} \cdot \mathbf{b} \cdot \cos((\mathbf{I}))}$

Open Calculator

ex $19.1959 \mathrm{kN/m^3} = \frac{100 \mathrm{kg}}{3 \mathrm{m} \cdot 10 \mathrm{m} \cdot \cos((80^\circ))}$

19) Vertical Stress on Surface of Prism

 $\left|\sigma_{\!\scriptscriptstyle Z} = rac{W}{h}
ight|$

 $\mathbf{ex} \ 1E^{-5}MPa = \frac{100 \text{kg}}{10 \text{m}}$

20) Vertical Stress on Surface of Prism given Unit Weight of Soil 6

fx $\sigma_{\!\scriptscriptstyle
m Z} = (z \cdot \gamma \cdot \overline{\cos(({
m I})))}$

 $9.377002 \text{MPa} = (3\text{m} \cdot 18\text{kN/m}^3 \cdot \cos((80^\circ)))$

21) Volume Per Unit Length of Prism

fx $V_l = (z \cdot b \cdot \cos((I)))$

$= 5.209445 \text{m}^2 = (3\text{m} \cdot 10\text{m} \cdot \cos((80°)))$

 $\mathbf{f}\mathbf{x}[W = \sigma_{ ext{vertical}} \cdot \mathbf{b}]$

22) Weight of Soil Prism given Vertical Stress on Surface of Prism 🗗

ex $100 \text{kg} = 10 \text{Pa} \cdot 10 \text{m}$

23) Weight of Soil Prism in Stability Analysis 🛂

$$\mathbf{f}\mathbf{x} \mathbf{W} = (\gamma \cdot \mathbf{z} \cdot \mathbf{b} \cdot \cos((\mathbf{I})))$$

Variables Used

- **b** Inclined Length (Meter)
- C Cohesion of Soil (Kilopascal)
- C_{II} Unit Cohesion (Pascal)
- fs Factor of Safety
- I Angle of Inclination (Degree)
- L Horizontal Length of Prism (Meter)
- **V**_I Volume per unit length of prism (Square Meter)
- W Weight of Prism (Kilogram)
- Z Depth of Prism (Meter)
- **y** Unit Weight of Soil (Kilonewton per Cubic Meter)
- $\sigma_{vertical}$ Vertical Stress at a Point in Pascal (Pascal)
- σ₇ Vertical Stress at a Point (Megapascal)
- φ Angle of Internal Friction (Degree)
- Φ_i Angle of Internal Friction of Soil (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: acos, acos(Number)
 Inverse trigonometric cosine function
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: sin, sin(Angle)

 Trigonometric sine function
- Function: tan, tan(Angle)

 Trigonometric tangent function
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Pressure in Pascal (Pa), Kilopascal (kPa), Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)
 Specific Weight Unit Conversion

Check other formula lists

- Bearing Capacity for Strip Footing for C-Φ Soils Formulas
- Bearing Capacity of Cohesive Soil Formulas
- Bearing Capacity of Non-cohesive Soil Formulas 🚰
- Bearing Capacity of Soils: Meyerhof's Analysis Formulas
- Foundation Stability Analysis Formulas
- Atterberg Limits Formulas
- Bearing Capacity of Soil: Terzaghi's Analysis. Specific Gravity of Soil Formulas Formulas 🔽
- Compaction of Soil Formulas
- Earth Moving Formulas
- Lateral Pressure for Cohesive and Non Cohesive Soil Formulas

- . Minimum Depth of Foundation by Rankine's Analysis Formulas 🚰
- Pile Foundations Formulas
- Scraper Production Formulas
- Seepage Analysis Formulas
- Slope Stability Analysis using Bishops Method Formulas
- Slope Stability Analysis using Culman's Method Formulas
- Soil Origin and Its Properties Formulas
- Stability Analysis of Infinite Slopes in Prism Formulas [7
- Vibration Control in Blasting Formulas
- Void Ratio of Soil Sample Formulas
- Water Content of Soil and Related Formulas 🚰

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/16/2024 | 3:16:59 AM UTC

Please leave your feedback here ...

