

Devices with Optical Components Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Devices with Optical Components Formulas

Devices with Optical Components

1) Angle of Rotation of Plane of Polarization

fx
$$\theta = 1.8 \cdot B \cdot L_{m}$$

Open Calculator

$$19.53 \text{rad} = 1.8 \cdot 0.35 \text{T} \cdot 31 \text{m}$$

2) Apex Angle

$$\mathbf{f}\mathbf{x}\mathbf{A} = \tan(\alpha)$$

Open Calculator

$$extbf{ex} \ 8.167315\degree = an(-3)$$

3) Brewsters Angle

$$\theta_{B} = \arctan\!\left(rac{n_{1}}{n_{ri}}
ight)$$

Open Calculator

4) Current Due to Optically Generated Carrier

$$\left[\mathbf{\hat{k}} \left[i_{\mathrm{opt}} = \mathbf{q} \cdot \mathbf{A}_{\mathrm{pn}} \cdot \mathbf{g}_{\mathrm{op}} \cdot \left(\mathbf{W} + \mathbf{L}_{\mathrm{dif}} + \mathbf{L}_{\mathrm{p}}
ight)
ight]$$

Open Calculator

ex
$$0.6 \text{mA} = 0.3 \text{C} \cdot 4.8 \mu \text{m}^2 \cdot 2.9 \text{e} 13 \cdot (6.79 \mu \text{m} + 5.477816 \mu \text{m} + 2.1 \mu \text{m})$$

5) Diffraction using Fresnel-Kirchoff Formula

$$heta_{
m dif} = a \sinigg(1.22 \cdot rac{\lambda_{
m vis}}{
m D}igg)$$

Open Calculator

6) Diffusion Coefficient of Electron

 $D_{\mathrm{E}} = \mu_{\mathrm{e}} \cdot [\mathrm{BoltZ}] \cdot rac{1}{[\mathrm{Charge-e}]}$

Open Calculator

 $ext{ex} \ 0.003387 ext{m}^2/ ext{s} = 1000 ext{cm}^2/ ext{V*s} \cdot ext{[BoltZ]} \cdot rac{393 ext{K}}{ ext{[Charge-e]}}$

7) Diffusion Length of Transition Region G

 $L_{
m dif} = rac{1_{
m opt}}{{
m g} \cdot {
m A}_{
m nn} \cdot {
m g}_{
m op}} - ({
m W} + {
m L}_{
m p})$

Open Calculator 🚰

 $= \frac{0.60 mA}{0.3 C \cdot 4.8 \mu m^2 \cdot 2.9 e13} - (6.79 \mu m + 2.1 \mu m)$

8) Effective Density of States in Conduction Band

 $N_{eff} = 2 \cdot \left(2 \cdot \pi \cdot m_{eff} \cdot [BoltZ] \cdot rac{T}{\lceil hP
ceil^2}
ight)^{rac{3}{2}}$

Open Calculator

 $\boxed{\textbf{ex} \ 3.9\text{E}^2 24 = 2 \cdot \left(2 \cdot \pi \cdot 0.2\text{e-}30\text{kg} \cdot [\text{BoltZ}] \cdot \frac{393\text{K}}{\text{page}^2}\right)^{\frac{3}{2}}}$

9) Electron Concentration under Unbalanced Condition 🖸

 $\mathbf{n}_{\mathrm{e}} = \mathbf{n}_{\mathrm{i}} \cdot \exp \left(rac{\mathbf{F}_{\mathrm{n}} - \mathbf{E}_{\mathrm{i}}}{\left[\mathrm{BoltZ} \right] \cdot \mathbf{T}}
ight)$

Open Calculator

Open Calculator

 $\boxed{ 0.339151 electrons/m^3 = 3.6 electrons/m^3 \cdot exp \bigg(\frac{3.7 eV - 3.78 eV}{\lceil \text{BoltZ} \rceil \cdot 393 K} \bigg) }$

10) Excitation Energy

$$\mathbf{E}_{\mathrm{exc}} = 1.6 \cdot 10^{-19} \cdot 13.6 \cdot \left(\frac{\mathrm{m}_{\mathrm{eff}}}{\mathrm{[Mass-e]}}\right) \cdot \left(\frac{1}{\mathrm{[Permitivity-silicon]}^2}\right)$$

$$\boxed{ 0.021783 \text{eV} = 1.6 \cdot 10^{-19} \cdot 13.6 \cdot \left(\frac{0.2 \text{e-} 30 \text{kg}}{[\text{Mass-e}]} \right) \cdot \left(\frac{1}{[\text{Permitivity-silicon}]^2} \right) }$$

11) Fringe Spacing given Apex Angle

 $ext{S}_{ ext{fri}} = rac{\lambda_{ ext{vis}}}{2 \cdot anig(lpha_{ ext{opto}}ig)}$

Open Calculator

$$= 1.41782 \mu = \frac{500 \mathrm{nm}}{2 \cdot \tan(10^{\circ})}$$

12) Maximum Acceptance Angle of Compound Lens

 ϵ hinspace hinspace

Open Calculator

$$= 22.02431 \circ = a \sin \Big(1.5 \cdot 0.0025 \text{m} \cdot \sqrt{10000} \Big)$$

13) Peak Retardation

 $\Phi_{
m m} = rac{2 \cdot \pi}{\lambda_{
m o}} \cdot {
m r} \cdot {
m n}_{
m ri}^3 \cdot {
m V}_{
m m}$

Open Calculator

14) PN Junction Capacitance

14) FN Junction Capacitance

Open Calculator

$$C_{j} = \frac{A_{pn}}{2} \cdot \sqrt{\frac{2 \cdot [Charge\text{-}e] \cdot \epsilon_{r} \cdot [Permitivity\text{-}silicon]}{V_{0} - (V)} \cdot \left(\frac{N_{A} \cdot N_{D}}{N_{A} + N_{D}}\right)}$$

ex

$$\boxed{1.9 \text{E} \, {}^{\hat{}} \, 6 f F = \frac{4.8 \mu m^2}{2} \cdot \sqrt{\frac{2 \cdot [\text{Charge-e}] \cdot 78 F / m \cdot [\text{Permitivity-silicon}]}{0.6 V - (-4 V)} \cdot \left(\frac{1 e + 22 / m^3 \cdot 1 e + 24 / m^3}{1 e + 22 / m^3 + 1 e + 24 / m^3}\right)}$$

Variables Used

- A Apex Angle (Degree)
- A_{con} Positive Constant
- Apn PN Junction Area (Square Micrometer)
- **B** Magnetic Flux Density (*Tesla*)
- C_i Junction Capacitance (Femtofarad)
- D Diameter of Aperture (Millimeter)
- D_E Electron Diffusion Coefficient (Square Meter Per Second)
- **E**_{exc} Excitation Energy (*Electron-Volt*)
- Ei Intrinsic Energy Level of Semiconductor (Electron-Volt)
- F_n Quasi Fermi Level of Electrons (Electron-Volt)
- gon Optical Generation Rate
- i_{opt} Optical Current (Milliampere)
- L_{dif} Diffusion Length of Transition Region (*Micrometer*)
- L_m Length of Medium (Meter)
- L_p Length of P-Side Junction (Micrometer)
- meff Effective Mass of Electron (Kilogram)
- n₁ Refractive Index of Medium 1
- N_△ Acceptor Concentration (1 per Cubic Meter)
- N_D Donor Concentration (1 per Cubic Meter)
- ne Electron Concentration (Electrons per Cubic Meter)
- N_{eff} Effective Density of States
- n_i Intrinsic Electron Concentration (Electrons per Cubic Meter)
- n_{ri} Refractive Index
- q Charge (Coulomb)
- r Length of Fiber (Meter)
- R_{lens} Radius of Lens (Meter)
- Sfri Fringe Space (Micron)
- **T** Absolute Temperature (Kelvin)
- V Reverse Bias Voltage (Volt)
- V₀ Voltage Across PN Junction (Volt)

- V_m Modulation Voltage (Volt)
- W Transition Width (Micrometer)
- α Alpha
- α_{opto} Angle of Interference (Degree)
- ε_r Relative Permittivity (Farad per Meter)
- **0** Angle of Rotation (Radian)
- θ_{acc} Acceptance Angle (Degree)
- θ_R Brewster's Angle (Degree)
- θ_{dif} Diffraction Angle (Radian)
- λ_o Wavelength of Light (Meter)
- λ_{vis} Wavelength of Visible Light (Nanometer)
- µe Mobility of Electron (Square Centimeter per Volt Second)
- Φ_m Peak Retardation (Radian)

Constants, Functions, Measurements used

Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant

• Constant: [BoltZ], 1.38064852E-23

Boltzmann constant

• Constant: [Charge-e], 1.60217662E-19 Charge of electron

Constant: [Mass-e], 9.10938356E-31
 Mass of electron

• Constant: [Permitivity-silicon], 11.7 Permittivity of silicon

Constant: [hP], 6.626070040E-34
 Planck constant

• Function: arctan, arctan(Number)

Inverse trigonometric functions are usually accompanied by the prefix - arc. Mathematically, we represent arctan or the inverse tangent function as tan-1 x or arctan(x).

Function: asin, asin(Number)
 The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

Function: ctan, ctan(Angle)
 Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.

• Function: exp, exp(Number)

n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.

• Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

• Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

• Function: tan, tan(Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m), Micrometer (μm), Nanometer (nm), Millimeter (mm), Micron (μ)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Electric Current in Milliampere (mA)

 Electric Current Unit Conversion

- Measurement: **Temperature** in Kelvin (K) *Temperature Unit Conversion*
- Measurement: Area in Square Micrometer (μm²)
 Area Unit Conversion
- Measurement: Energy in Electron-Volt (eV)
 Energy Unit Conversion
- Measurement: Electric Charge in Coulomb (C)

 Electric Charge Unit Conversion
- Measurement: Angle in Radian (rad), Degree (°)
 Angle Unit Conversion
- Measurement: Capacitance in Femtofarad (fF)
 Capacitance Unit Conversion
- Measurement: Magnetic Flux Density in Tesla (T)

 Magnetic Flux Density Unit Conversion
- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Diffusivity in Square Meter Per Second (m²/s)
 Diffusivity Unit Conversion
- Measurement: Mobility in Square Centimeter per Volt Second (cm²/V*s)
 Mobility Unit Conversion
- Measurement: Carrier Concentration in 1 per Cubic Meter (1/m³)
 Carrier Concentration Unit Conversion
- Measurement: Permittivity in Farad per Meter (F/m)

 Permittivity Unit Conversion
- Measurement: Electron Density in Electrons per Cubic Meter (electrons/m³)

 Electron Density Unit Conversion

Check other formula lists

- Devices with Optical Components Formulas 🗗 Photonics Devices Formulas 🗗
- Lasers Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/12/2024 | 7:45:51 AM UTC

Please leave your feedback here...

