

Flow Regime Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

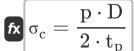
Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator 2


Open Calculator G

Open Calculator

List of 17 Flow Regime Formulas

Flow Regime **G**

1) Circumferential stress developed in pipe wall

 $ext{ex} 6.8 ext{E^7N/m^2} = rac{1.7 ext{E^7N/m^2} \cdot 0.12 ext{m}}{2 \cdot 0.015 ext{m}}$

2) Coefficient of contraction for sudden contraction

 $ext{C}_{ ext{c}} = rac{\overline{ ext{V}_{2}}'}{(ext{V}_{2}') + \sqrt{ ext{h}_{ ext{c}} \cdot 2 \cdot [ext{g}]}}$

 $ext{ex} 0.599533 = rac{2.89 ext{m/s}}{2.89 ext{m/s} + \sqrt{0.19 ext{m} \cdot 2 \cdot [ext{g}]}}$

3) Discharge in Equivalent Pipe 🗗

 $\mathbf{Q} = \sqrt{rac{\mathrm{H_l} \cdot (\pi^2) \cdot 2 \cdot \left(\mathrm{D_{eq}^5}
ight) \cdot [\mathrm{g}]}{4 \cdot 16 \cdot \mu \cdot \mathrm{L}}}$

 $0.02483 \mathrm{m}^3/\mathrm{s} = \sqrt{rac{20 \mathrm{m} \cdot (\pi^2) \cdot 2 \cdot \left((0.165 \mathrm{m})^5
ight) \cdot [\mathrm{g}]}{4 \cdot 16 \cdot 0.01 \cdot 1200 \mathrm{m}}}$

4) Force required to accelerate water in pipe

fx $F = M_w \cdot a_1$

Open Calculator

ex $0.0925 \mathrm{N} = 0.05 \mathrm{kg} \cdot 1.85 \mathrm{m/s^2}$

5) Longitudinal Stress developed in Pipe wall

 $\sigma_{
m l} = rac{{
m p}\cdot{
m D}}{4\cdot{
m t}_{
m p}}$

Open Calculator

 $oxed{ex} 3.4 ext{E}^7 ext{N/m}^2 = rac{1.7 ext{E}^7 ext{N/m}^2 \cdot 0.12 ext{m}}{4 \cdot 0.015 ext{m}}$

6) Retarding force for gradual closure of valves

 $\mathbf{F}_{\mathrm{r}} =
ho' \cdot \mathbf{A} \cdot \mathbf{L} \cdot rac{\mathrm{V_f}}{\mathrm{t_c}}$

Open Calculator 🗗

ex $319.889 \mathrm{N} = 1010 \mathrm{kg/m^3 \cdot 0.0113m^2 \cdot 1200m \cdot \frac{12.5 \mathrm{m/s}}{535.17 \mathrm{s}}}$

7) Time required to close Valve for Gradual Closure of Valves

 $\mathbf{f}_{\mathrm{c}} = rac{
ho' \cdot \mathrm{L} \cdot \mathrm{V}_{\mathrm{f}}}{\mathsf{I}} \Big|$

Open Calculator 🗗

 $ag{535.7143s} = rac{1010 ext{kg/m}^3 \cdot 1200 ext{m} \cdot 12.5 ext{m/s}}{28280 ext{N/m}^2}$

Open Calculator 2

Open Calculator

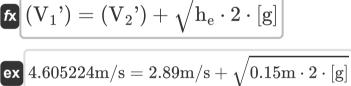
Open Calculator

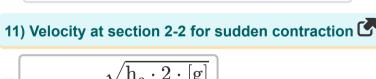
Open Calculator

8) Time taken by pressure wave to travel

fx $t=2\cdotrac{L}{C}$

ex $125.6545s = 2 \cdot \frac{1200m}{19.1m/s}$


9) Velocity at Outlet for Head Loss at Exit of Pipe


fx $v = \sqrt{h_o \cdot 2 \cdot [g]}$

ex $12.49487 ext{m/s} = \sqrt{7.96 ext{m} \cdot 2 \cdot [ext{g}]}$

10) Velocity at section 1-1 for sudden enlargement

 $oldsymbol{\kappa}({
m V_1'}) = ({
m V_2'}) + \sqrt{{
m h_e} \cdot 2 \cdot [{
m g}]}$

 $extbf{(V_2')} = rac{\sqrt{ ext{h}_{ ext{c}} \cdot 2 \cdot [ext{g}]}}{\left(rac{1}{G}
ight) - 1}$

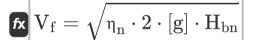
ex
$$2.895632 ext{m/s} = rac{\sqrt{0.19 ext{m} \cdot 2 \cdot [ext{g}]}}{\left(rac{1}{0.6}
ight) - 1}$$

12) Velocity at section 2-2 for sudden enlargement 🗗

 $oldsymbol{\kappa}(\mathrm{V_2'}) = (\mathrm{V_1'}) - \sqrt{\mathrm{h_e} \cdot 2 \cdot [\mathrm{g}]}$

Open Calculator 🗗

(- / (1 / V) (6)


 $= 2.464776 ext{m/s} = 4.18 ext{m/s} - \sqrt{0.15 ext{m} \cdot 2 \cdot ext{[g]}}$

13) Velocity of Flow at Outlet of Nozzle

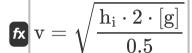
$$extbf{V}_f = \sqrt{2 \cdot [g] \cdot rac{H_{bn}}{1 + \left(4 \cdot \mu \cdot L \cdot rac{a_2^2}{D \cdot (A^2)}
ight)}}$$

Open Calculator

14) Velocity of Flow at outlet of Nozzle for Efficiency and Head

Open Calculator

 $\mathbf{ex} \ 21.14671 \mathrm{m/s} = \sqrt{0.8 \cdot 2 \cdot [\mathrm{g}] \cdot 28.5 \mathrm{m}}$


15) Velocity of Fluid for Head Loss due to Obstruction in Pipe

$$V_{\mathrm{f}} = rac{\sqrt{\mathrm{H_o} \cdot 2 \cdot [\mathrm{g}]}}{\left(rac{\mathrm{A}}{\mathrm{C_c \cdot (\mathrm{A-A'})}}
ight) - 1}$$

Open Calculator 2

$$= \frac{\sqrt{7.36 \text{m} \cdot 2 \cdot [\text{g}]}}{\left(\frac{0.0113 \text{m}^2}{0.6 \cdot (0.0113 \text{m}^2 - 0.0017 \text{m})}\right) - 1}$$

16) Velocity of fluid in pipe for head loss at entrance of pipe

Open Calculator

ex
$$12.49487 ext{m/s} = \sqrt{rac{3.98 ext{m} \cdot 2 \cdot [ext{g}]}{0.5}}$$

17) Velocity of liquid at vena-contracta

$$V_{c} = rac{A \cdot V_{f}}{C_{c} \cdot (A - A')}$$

Open Calculator

$$ext{ex} \left[24.52257 ext{m/s} = rac{0.0113 ext{m}^2 \cdot 12.5 ext{m/s}}{0.6 \cdot (0.0113 ext{m}^2 - 0.0017 ext{m})}
ight]$$

Variables Used

- A Cross Sectional Area of Pipe (Square Meter)
- A' Maximum Area of Obstruction (Meter)
- a₂ Nozzle Area at Outlet (Square Meter)
- a_I Acceleration of Liquid (Meter per Square Second)
- C Velocity of Pressure Wave (Meter per Second)
- C_c Coefficient of Contraction in Pipe
- D Diameter of Pipe (Meter)
- Deg Diameter of Equivalent Pipe (Meter)
- F Force (Newton)
- **F**_r Retarding Force on Liquid in Pipe (Newton)
- H_{bn} Head at Base of Nozzle (Meter)
- h_c Loss of Head Sudden Contraction (Meter)
- h_e Loss of Head Sudden Enlargement (Meter)
- h_i Head Loss at Pipe Entrance (Meter)
- H_I Loss of Head in Equivalent Pipe (Meter)
- h_o Head Loss at Pipe Exit (Meter)
- H_o Loss of Head Due to Obstruction in Pipe (Meter)
- I Intensity of Pressure of Wave (Newton per Square Meter)
- L Length of Pipe (Meter)
- **M**_w Mass of Water (Kilogram)
- p Pressure Rise at Valve (Newton per Square Meter)
- Q Discharge through Pipe (Cubic Meter per Second)

- t Time Taken to Travel (Second)
- t_c Time Required to Close Valve (Second)
- t_p Thickness of Liquid Carrying Pipe (Meter)
- **V** Velocity (Meter per Second)
- V₁' Velocity of Fluid at Section 1 (Meter per Second)
- V2' Velocity of Fluid at Section 2 (Meter per Second)
- V_c Velocity of Liquid Vena Contracta (Meter per Second)
- **V**_f Flow Velocity through Pipe (Meter per Second)
- η_n Efficiency for Nozzle
- µ Coefficient of Friction of Pipe
- ρ' Density of Fluid Inside the Pipe (Kilogram per Cubic Meter)
- σ_c Circumferential Stress (Newton per Square Meter)
- σ_I Longitudinal Stress (Newton per Square Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 Acceleration Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)
 Volumetric Flow Rate Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

 Density Unit Conversion
- Measurement: Stress in Newton per Square Meter (N/m²)

 Stress Unit Conversion

Check other formula lists

Flow Regime Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/29/2024 | 7:30:44 AM UTC

Please leave your feedback here...

