

Lift and Drag Requirements Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

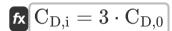
Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...



List of 19 Lift and Drag Requirements Formulas

Lift and Drag Requirements

1) Coefficient of Drag due to Lift for Minimum Power required

Open Calculator

$$\begin{array}{c} \textbf{ex} \ 0.93 = 3 \cdot 0.31 \end{array}$$

2) Coefficient of Drag for given Thrust and Weight

$$\mathbf{K} \overline{\mathbf{C}_{\mathrm{D}} = rac{\mathbf{T} \cdot \mathbf{C}_{\mathrm{L}}}{\mathbf{W}_{\mathrm{body}}}}$$

Open Calculator

3) Coefficient of Drag for given Thrust-to-Weight Ratio

fx
$$\left[\mathrm{C_D} = \mathrm{C_L} \cdot \mathrm{TW}
ight]$$

Open Calculator

$$\mathbf{ex} \ 0.495 = 1.1 \cdot 0.45$$

4) Coefficient of Lift for given thrust and weight

 $\mathbf{K} \left[\mathrm{C_L} = \mathrm{W_{body}} \cdot rac{\mathrm{C_D}}{\mathrm{T}}
ight]$

Open Calculator

 $oxed{ex} 1.105 = 221 \mathrm{N} \cdot rac{0.5}{100 \mathrm{N}}$

5) Coefficient of Lift for given Thrust-to-Weight Ratio

fx $C_{L}=rac{C_{D}}{TW}$

Open Calculator

 $\mathbf{ex} \boxed{1.1111111} = \frac{0.5}{0.45}$

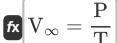
6) Drag for Level and Unaccelerated Flight

fx $\left[\mathrm{F_D} = \mathrm{T} \cdot \mathrm{cos}(\sigma_{\mathrm{T}})
ight]$

Open Calculator 🚰

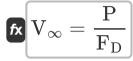
 $99.995N = 100N \cdot \cos(0.01rad)$

fx $F_{ m D} = P_{ m dynamic} \cdot A \cdot C_{ m D}$


Open Calculator

 $\texttt{ex} \ 100 \texttt{N} = 10 \texttt{Pa} \cdot 20 \texttt{m}^{\scriptscriptstyle 2} \cdot 0.5$

7) Drag for Level and Unaccelerated Flight at Negligible Thrust Angle 🗗


8) Freestream Velocity given required Power

Open Calculator

 $ag{80} = \frac{3000 W}{100 N}$

9) Freestream Velocity given Total Drag Force

Open Calculator

 $\mathbf{ex} = \frac{3000 \mathrm{W}}{99.99 \mathrm{N}}$

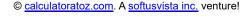
10) Lift Coefficient given Minimum required Thrust

fx

Open Calculator 🗗

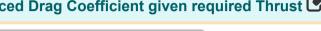
$${
m C_L} = \sqrt{\pi \cdot {
m e} \cdot {
m AR} \cdot \left(\left(rac{{
m T}}{{
m P}_{
m dynamic} \cdot {
m A}}
ight) - {
m C}_{
m D,0}
ight)}$$

ex $1.103486 = \sqrt{\pi \cdot 0.51 \cdot 4 \cdot \left(\left(\frac{100 \mathrm{N}}{10 \mathrm{Pa} \cdot 20 \mathrm{m}^2} \right) - 0.31 \right)}$


11) Lift for Level and Unaccelerated Flight at Negligible Thrust Angle

Open Calculator 🗗

 $extbf{ex}$ $220 ext{N} = 10 ext{Pa} \cdot 20 ext{m}^2 \cdot 1.1$


12) Lift for Unaccelerated Flight

fx $\mathrm{F_L} = \mathrm{W_{body}} - \mathrm{T} \cdot \sin(\sigma_{\mathrm{T}})$

Open Calculator 🚰

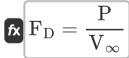
ex $220N = 221N - 100N \cdot \sin(0.01rad)$

13) Lift-Induced Drag Coefficient given required Thrust

Open Calculator

 $\mathbf{E} \mathbf{C}_{\mathrm{D,i}} = \left(rac{\mathrm{T}}{\mathrm{P}_{\mathrm{dynamic}} \cdot \mathrm{S}}
ight) - \mathrm{C}_{\mathrm{D,0}}$

ex $0.94 = \left(\frac{100 \mathrm{N}}{10 \mathrm{Pa} \cdot 8 \mathrm{m}^2}\right) - 0.31$


14) Lift-to-Drag Ratio given required Thrust of Aircraft 🖸

 $ag{LD} = rac{ ext{W}_{ ext{body}}}{ ext{T}}$

Open Calculator 🗗

 $2.21 = \frac{221N}{100N}$

15) Total Drag Force given required Power 🗗

Open Calculator

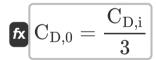
$$\boxed{100\mathrm{N} = \frac{3000\mathrm{W}}{30\mathrm{m/s}}}$$

16) Zero-lift drag coefficient at minimum required thrust 🗗

 $m C_{D0,min} = rac{C_L^2}{\pi \cdot e \cdot AR}$

Open Calculator

 $= \frac{\left(1.1\right)^2}{\pi \cdot 0.51 \cdot 4}$


17) Zero-Lift Drag Coefficient for given Lift Coefficient

 $\left| \mathbf{C}_{\mathrm{D},0} = \left(rac{\mathrm{T}}{\mathrm{P}_{\mathrm{dynamic}} \cdot \mathrm{A}}
ight) - \left(rac{\mathrm{C}_{\mathrm{L}}^2}{\pi \cdot \mathrm{e} \cdot \mathrm{AR}}
ight)
ight|$

Open Calculator

ex $0.311199 = \left(\frac{100 \text{N}}{10 \text{Pa} \cdot 20 \text{m}^2}\right) - \left(\frac{(1.1)^2}{\pi \cdot 0.51 \cdot 4}\right)$

18) Zero-Lift Drag Coefficient for Minimum Power required

Open Calculator 🚰

 $\boxed{0.31 = \frac{0.93}{3}}$

19) Zero-Lift Drag Coefficient given required Thrust

Open Calculator

$$\mathbf{E} \mathbf{C}_{\mathrm{D},0} = \left(rac{T}{P_{\mathrm{dynamic}} \cdot S}
ight) - C_{\mathrm{D,i}}$$

$$oxed{ex} 0.32 = \left(rac{100 \mathrm{N}}{10 \mathrm{Pa} \cdot 8 \mathrm{m}^2}
ight) - 0.93$$

Variables Used

- A Area (Square Meter)
- AR Aspect Ratio of a Wing
- C_D Drag Coefficient
- C_{D.0} Zero Lift Drag Coefficient
- C_{D,i} Coefficient Of Drag Due to Lift
- C_{D0.min} Zero-Lift Drag Coefficient at Minimum Thrust
- C_I Lift Coefficient
- e Oswald Efficiency Factor
- **F**_D Drag Force (Newton)
- **F**_I Lift Force (Newton)
- LD Lift-to-Drag Ratio
- P Power (Watt)
- P_{dvnamic} Dynamic Pressure (Pascal)
- S Reference Area (Square Meter)
- T Thrust (Newton)
- TW Thrust-to-Weight Ratio
- V_∞ Freestream Velocity (Meter per Second)
- W_{body} Weight of Body (Newton)
- σ_T Thrust Angle (Radian)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle)
 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Pressure in Pascal (Pa)

 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Radian (rad)
 Angle Unit Conversion

Check other formula lists

Lift and Drag Requirements
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/15/2024 | 9:48:03 AM UTC

Please leave your feedback here...

