

Preliminary Aerodynamics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 17 Preliminary Aerodynamics Formulas

Preliminary Aerodynamics

1) Aerodynamic Force

fx $F_{
m R}=F_{
m D}+F_{
m L}$

Open Calculator 🗗

 $= 100.5 \mathrm{N} = 80.05 \mathrm{N} + 20.45 \mathrm{N}$

2) Dynamic pressure aircraft 🗹

 $\mathbf{f}\mathbf{x} = rac{1}{2} \cdot \mathbf{p} \cdot V_{\mathrm{fs}}^2$

Open Calculator 🗗

3) Dynamic Pressure given Drag Coefficient

70.5189Pa = $\frac{1}{2} \cdot 1.225$ kg/m³ $\cdot (10.73$ m/s)²

 $|\mathbf{f}| \mathbf{q} = \frac{\mathbf{F}_\mathrm{D}}{\mathbf{C}_\mathrm{D}}$

Open Calculator 🗗

4) Dynamic Pressure given Gas Constant

 $\mathbf{q} = rac{1}{2} \cdot \mathbf{p} \cdot \mathbf{M}_{\mathrm{r}}^2 \cdot \mathrm{cp} \cdot \mathbf{R} \cdot \mathbf{T}$

Open Calculator 🗗

ex

 $70.51347 ext{Pa} = rac{1}{2} \cdot 1.225 ext{kg/m}^3 \cdot (7.67)^2 \cdot 0.003 ext{J/(kg*K)} \cdot 4.1 ext{J/(kg*K)} \cdot 159.1 ext{K}$

5) Dynamic Pressure given Induced Drag

 $\mathbf{f} \mathbf{c} = rac{\mathrm{F_L^2}}{\pi \cdot \mathrm{D_i} \cdot \mathrm{b_W^2}}$

Open Calculator

 $\boxed{70.54406 \text{Pa} = \frac{\left(20.45\text{N}\right)^2}{\pi \cdot 1.2 \text{N} \cdot \left(1.254\text{m}\right)^2}}$

6) Dynamic Pressure given Lift Coefficient

 \mathbf{f} $\mathbf{q} = rac{\mathbf{F}_{\mathrm{L}}}{\mathbf{C}_{\mathrm{L}}}$

Open Calculator

7) Dynamic Pressure given Mach Number

 $\mathbf{q} = rac{1}{2} \cdot \mathbf{p} \cdot \left(\mathbf{M_r} \cdot \mathbf{a}
ight)^2$

Open Calculator

8) Dynamic Pressure given Normal Pressure

 $\mathbf{r} = rac{1}{2} \cdot \mathrm{cp} \cdot \mathrm{p} \cdot \mathrm{M}_{\mathrm{r}}^2$

Open Calculator

70.59468Pa = $\frac{1}{2} \cdot 0.003$ J/(kg*K) $\cdot 800$ Pa $\cdot (7.67)^2$

9) Flight Speed given Dynamic Pressure

Open Calculator

ex
$$10.72856 \mathrm{m/s} = \sqrt{rac{2 \cdot 70.5 \mathrm{Pa}}{1.225 \mathrm{kg/m^3}}}$$

10) Mach Number of Moving Object

fx
$$M_{r}=rac{v}{c}$$

Open Calculator 🗗

11) Mach Number-2

$$\mathbf{M} = \sqrt{\left(rac{\left((\mathrm{Y}-1)\cdot\mathrm{M}_{\mathrm{r}}^2+2
ight)}{2\cdot\mathrm{Y}\cdot\mathrm{M}_{\mathrm{r}}^2-(\mathrm{Y}-1)}
ight)}$$

Open Calculator 🛂

12) Power required at Altitude

extstyle ext

Open Calculator

 $= \sqrt{\frac{2 \cdot (750 \mathrm{N})^3 \cdot (1.134)^2}{997 \mathrm{kg/m^3} \cdot 91.05 \mathrm{m^2} \cdot (0.29)^3} }$

13) Power required at Altitude given Power at sea-level

 $extstyle{P_{R,alt} = P_{R,0} \cdot \sqrt{rac{[Std ext{-}Air ext{-}Density ext{-}Sea]}{
ho_0}}}$

Open Calculator 🖸

14) Power required at sea-level conditions

 $\mathbf{P}_{\mathrm{R},0} = \sqrt{rac{2 \cdot \mathrm{W}_{\mathrm{body}}^{3} \cdot \mathrm{C}_{\mathrm{D}}^{2}}{\left[\mathrm{Std ext{-}Air ext{-}Density ext{-}Sea}
ight] \cdot \mathrm{S} \cdot \mathrm{C}_{\mathrm{L}}^{3}}}$

Open Calculator 🗗

15) Velocity at Altitude

 $V_{alt} = \sqrt{2 \cdot rac{W_{body}}{
ho_0 \cdot S \cdot C_L}}$

Open Calculator

ex $0.238704 \mathrm{m/s} = \sqrt{2 \cdot \frac{750 \mathrm{N}}{997 \mathrm{kg/m^3} \cdot 91.05 \mathrm{m^2} \cdot 0.29}}$

16) Velocity at Altitude given Velocity at Sea-Level

 $V_{
m alt} = V_0 \cdot \sqrt{rac{[ext{Std-Air-Density-Sea}]}{
ho_0}}$

Open Calculator 🗗

 $ext{ex} 0.235236 ext{m/s} = 6.7 ext{m/s} \cdot \sqrt{rac{ ext{[Std-Air-Density-Sea]}}{997 ext{kg/m}^3}}$

17) Velocity at Sea-Level given Lift Coefficient

 $V_0 = \sqrt{rac{2 \cdot W_{body}}{[ext{Std-Air-Density-Sea}] \cdot S \cdot C_L}}$

Open Calculator

Variables Used

- a Sonic Speed (Meter per Second)
- b_W Lateral Plane Span (Meter)
- C Speed of Sound (Meter per Second)
- C_D Drag Coefficient
- C1 Lift Coefficient
- cp Specific Heat of Air (Joule per Kilogram per K)
- **D**_i Induced Drag (Newton)
- **F**_D Drag Force (Newton)
- F_I Lift Force (Newton)
- F_R Aerodynamic Force (Newton)
- M Mach Number 2
- M_r Mach Number
- **p** Pressure (Pascal)
- P_{R.0} Power Required at Sea-level (Watt)
- P_{R.alt} Power Required at Altitude (Watt)
- **q** Dynamic Pressure (Pascal)
- R Gas Constant (Joule per Kilogram per K)
- S Reference Area (Square Meter)
- T Temperature (Kelvin)
- V Velocity (Meter per Second)
- Vn Velocity at Sea-Level (Meter per Second)
- Valt Velocity at an Altitude (Meter per Second)
- V_{fs} Flight Speed (Meter per Second)
- W_{body} Weight of Body (Newton)

- Y Heat Capacity Ratio
- **p** Ambient Air Density (Kilogram per Cubic Meter)
- ρ₀ Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [Std-Air-Density-Sea], 1.229
 Standard air density at sea-level conditions
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Temperature in Kelvin (K)

 Temperature Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Specific Heat Capacity in Joule per Kilogram per K (J/(kg*K))
 Specific Heat Capacity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion

Check other formula lists

- Aircraft Dynamics Nomenclature Formulas
- Atmosphere and Gas Properties
 Formulas
- Lift and Drag Polar Formulas
- Preliminary Aerodynamics
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/14/2024 | 6:59:47 AM UTC

Please leave your feedback here...

