
calculatoratoz.com

unitsconverters.com

Area-Velocity and Ultrasonic Method of Streamflow Measurement Formulas

Examples!
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Area-Velocity and Ultrasonic Method of Streamflow Measurement Formulas

Area-Velocity and Ultrasonic Method of Streamflow Measurement $\mathbb{C B}$

Area-Velocity Method ©

1) Flow Velocity
fx $\mathrm{V}_{\mathrm{f}}=\mathrm{V} \cdot \sin (\theta)$
Open Calculator
ex $7.660444 \mathrm{~m} / \mathrm{s}=10 \mathrm{~m} / \mathrm{s} \cdot \sin \left(50^{\circ}\right)$
2) Moving Boat Velocity
$\mathrm{fx}_{\mathrm{x}} \mathrm{v}_{\mathrm{b}}=\mathrm{V} \cdot \cos (\theta)$
Open Calculator
ex $6.427876 \mathrm{~m} / \mathrm{s}=10 \mathrm{~m} / \mathrm{s} \cdot \cos \left(50^{\circ}\right)$
3) Moving Boat Velocity given Width between Two Verticals
$f \mathrm{f} \mathrm{v}_{\mathrm{b}}=\frac{\mathrm{W}}{\Delta t}$
Open Calculator
ex $6.382979 \mathrm{~m} / \mathrm{s}=\frac{300 \mathrm{~m}}{47 \mathrm{~s}}$
4) Partial Discharge in Sub-Area between Two Verticals given Flow Velocity
$\mathrm{fx} \Delta \mathrm{Q}_{\mathrm{i}}=\left(\frac{\mathrm{y}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}+1}}{2}\right) \cdot \mathrm{W}+1 \cdot \mathrm{~V}_{\mathrm{f}}$
ex $1057.6 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{3 \mathrm{~m}+4 \mathrm{~m}}{2}\right) \cdot 300 \mathrm{~m}+1 \cdot 7.6 \mathrm{~m} / \mathrm{s}$
5) Partial Discharge in Sub-Area between Two Verticals given Resultant Velocity
$\Delta \mathrm{Q}_{\mathrm{i}}=\left(\frac{\mathrm{y}_{\mathrm{i}}+\mathrm{y}_{\mathrm{i}+1}}{2}\right) \cdot \mathrm{V}^{2} \cdot \sin (\theta) \cdot \cos (\theta) \cdot \Delta \mathrm{t}$
ex $135.0007 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{3 \mathrm{~m}+4 \mathrm{~m}}{2}\right) \cdot(10 \mathrm{~m} / \mathrm{s})^{2} \cdot \sin \left(50^{\circ}\right) \cdot \cos \left(50^{\circ}\right) \cdot 47 \mathrm{~s}$
6) Resultant Velocity given Flow Velocity
$\mathrm{fx} \mathrm{V}=\frac{\mathrm{V}_{\mathrm{f}}}{\sin (\theta)}$
Open Calculator
ex $9.921095 \mathrm{~m} / \mathrm{s}=\frac{7.6 \mathrm{~m} / \mathrm{s}}{\sin \left(50^{\circ}\right)}$
7) Resultant Velocity given Moving Boat Velocity
$\mathbf{f x} \mathrm{V}=\frac{\mathrm{v}_{\mathrm{b}}}{\cos (\theta)}$
Open Calculator
ex $9.987747 \mathrm{~m} / \mathrm{s}=\frac{6.42 \mathrm{~m} / \mathrm{s}}{\cos \left(50^{\circ}\right)}$
8) Time of Transit between two Verticals given Width between Verticals
$f \mathrm{fx} \Delta \mathrm{t}=\frac{\mathrm{W}}{\mathrm{v}_{\mathrm{b}}}$
ex $46.72897 \mathrm{~s}=\frac{300 \mathrm{~m}}{6.42 \mathrm{~m} / \mathrm{s}}$
9) Width between Two Verticals

$f_{\mathrm{x}} \mathrm{W}=\mathrm{v}_{\mathrm{b}} \cdot \Delta \mathrm{t}$
ex $5.029 \mathrm{~m}=6.42 \mathrm{~m} / \mathrm{s} \cdot 47 \mathrm{~s}$

Measurement of Velocity

10) Average Stream Velocity given Minimum Weight

$$
f \mathrm{x} v=\frac{\mathrm{N}}{50 \cdot \mathrm{~d}}
$$

$\mathrm{ex} 20 \mathrm{~m} / \mathrm{s}=\frac{3300 \mathrm{~N}}{50 \cdot 3.3 \mathrm{~m}}$
11) Average Velocity in Moderately Deep Streams
$\mathbf{f x}_{\mathrm{x}}^{\mathrm{v}}=\frac{\mathrm{v}_{0.2}+\mathrm{v}_{0.8}}{2}$
$\mathrm{ex} 20 \mathrm{~m} / \mathrm{s}=\frac{26 \mathrm{~m} / \mathrm{s}+14 \mathrm{~m} / \mathrm{s}}{2}$
12) Average Velocity obtained by using Reduction Factor
$f_{\mathrm{x}} \mathrm{v}=\mathrm{K} \cdot \mathrm{v}_{\mathrm{s}}$
Open Calculator
ex $20.9 \mathrm{~m} / \mathrm{s}=0.95 \cdot 22 \mathrm{~m} / \mathrm{s}$
13) Depth of Flow at Vertical given Sounding Weights
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{N}}{50 \cdot \mathrm{v}}$
Open Calculator
ex $3.3 \mathrm{~m}=\frac{3300 \mathrm{~N}}{50 \cdot 20 \mathrm{~m} / \mathrm{s}}$
14) Distance Travelled given Surface Velocity
$f x S=v_{s} \cdot t$
ex $110 \mathrm{~m}=22 \mathrm{~m} / \mathrm{s} \cdot 5 \mathrm{~s}$

15) Revolutions per Second of Horizontal Axis Meter given Stream Velocity

$f \times \mathrm{Ns}=\frac{\mathrm{v}-\mathrm{b}}{\mathrm{a}}$
$\mathrm{ex} 32=\frac{20 \mathrm{~m} / \mathrm{s}-0.8}{0.6}$

16) Sounding Weights

$f \mathrm{f} \quad \mathrm{N}=50 \cdot \mathrm{v} \cdot \mathrm{d}$

ex $3300 \mathrm{~N}=50 \cdot 20 \mathrm{~m} / \mathrm{s} \cdot 3.3 \mathrm{~m}$

17) Stream Velocity at Instrument Location
$f \mathrm{f} v=\mathrm{a} \cdot \mathrm{Ns}+\mathrm{b}$
ex $20.6 \mathrm{~m} / \mathrm{s}=0.6 \cdot 33+0.8$
18) Surface Velocity

$\mathrm{ex} 22 \mathrm{~m} / \mathrm{s}=\frac{110 \mathrm{~m}}{5 \mathrm{~s}}$
19) Surface Velocity given Average of Velocity \longleftarrow
$f \mathrm{x} \mathrm{v}_{\mathrm{s}}=\frac{\mathrm{v}}{\mathrm{K}}$
ex $21.05263 \mathrm{~m} / \mathrm{s}=\frac{20 \mathrm{~m} / \mathrm{s}}{0.95}$
20) Time of Distance Travelled given Surface Velocity
$\mathrm{fx} \mathrm{t}=\frac{\mathrm{S}}{\mathrm{v}_{\mathrm{S}}}$
ex $5 \mathrm{~s}=\frac{110 \mathrm{~m}}{22 \mathrm{~m} / \mathrm{s}}$
21) Velocity Distribution in Rough Turbulent Flow
$\mathrm{fx}_{\mathrm{x}}=5.75 \cdot \mathrm{v}_{\text {shear }} \cdot \log 10\left(30 \cdot \frac{\mathrm{y}}{\mathrm{k}_{\mathrm{s}}}\right)$
ex $20.77107 \mathrm{~m} / \mathrm{s}=5.75 \cdot 6 \mathrm{~m} / \mathrm{s} \cdot \log 10\left(30 \cdot \frac{2 \mathrm{~m}}{15}\right)$

Ultrasonic Method

22) Average Velocity along Path $A B$ at certain Height above Bed
$f x$
Open Calculator

$$
\mathrm{v}_{\mathrm{avg}}=\left(\left(\frac{\mathrm{L}}{2}\right) \cdot \cos (\theta)\right) \cdot\left(\left(\frac{1}{\mathrm{t}_{1}}\right)-\left(\frac{1}{\mathrm{t}_{2}}\right)\right)
$$

ex
$2.351318 \mathrm{~m} / \mathrm{s}=\left(\left(\frac{3000 \mathrm{~m}}{2}\right) \cdot \cos \left(50^{\circ}\right)\right) \cdot\left(\left(\frac{1}{2.02 \mathrm{~s}}\right)-\left(\frac{1}{2.03 \mathrm{~s}}\right)\right)$
23) Elapse Time of Ultrasonic Signal sent by A

ex $2.020188 \mathrm{~s}=\frac{3000 \mathrm{~m}}{1480 \mathrm{~m} / \mathrm{s}+5.01 \mathrm{~m} / \mathrm{s}}$
24) Elapse Time of Ultrasonic Signal sent by B
$f \mathrm{fx} \mathrm{t}_{2}=\frac{\mathrm{L}}{\mathrm{C}-\mathrm{v}_{\mathrm{p}}}$
Open Calculator
ex $2.033912 \mathrm{~s}=\frac{3000 \mathrm{~m}}{1480 \mathrm{~m} / \mathrm{s}-5.01 \mathrm{~m} / \mathrm{s}}$
25) Length of Path for Elapse Time of Ultrasonic Signal
$\mathrm{ff}_{\mathrm{x}} \mathrm{L}=\mathrm{t}_{1} \cdot\left(\mathrm{C}+\mathrm{v}_{\mathrm{p}}\right)$

$\mathrm{ex} 2999.72 \mathrm{~m}=2.02 \mathrm{~s} \cdot(1480 \mathrm{~m} / \mathrm{s}+5.01 \mathrm{~m} / \mathrm{s})$

26) Length of Path given Elapse Time of Ultrasonic Signal
$f \mathrm{f} L=\mathrm{t}_{1} \cdot\left(\mathrm{C}-\mathrm{v}_{\mathrm{p}}\right)$
Open Calculator
ex $2979.48 \mathrm{~m}=2.02 \mathrm{~s} \cdot(1480 \mathrm{~m} / \mathrm{s}-5.01 \mathrm{~m} / \mathrm{s})$
27) Velocity of Sound in Water given Elapse Time of Ultrasonic Signal sent by A
$f_{\mathrm{x}} \mathrm{C}=\left(\frac{\mathrm{L}}{\mathrm{t}_{1}}\right)-\mathrm{v}_{\mathrm{p}}$
ex $1480.139 \mathrm{~m} / \mathrm{s}=\left(\frac{3000 \mathrm{~m}}{2.02 \mathrm{~s}}\right)-5.01 \mathrm{~m} / \mathrm{s}$

Variables Used

- a Constant a
- b Constant b
- C Velocity of Sound in Water (Meter per Second)
- d Depth of Flow in Vertical (Meter)
- K Reduction Factor
- $\mathbf{k}_{\mathbf{s}}$ Equivalent Sand-Grain Roughness
- L Length of Path from A to B (Meter)
- \mathbf{N} Minimum Weight (Newton)
- Ns Revolutions per Second of Meter
- S Distance Travelled (Meter)
- t Time Taken to Travel (Second)
- \mathbf{t}_{1} Elapse Time t1 (Second)
- \mathbf{t}_{2} Elapse Time t2 (Second)
- V Average Velocity in Vertical (Meter per Second)
- V Resultant Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{0 . 2}}$ Velocity at 0.2 Times Depth of Flow (Meter per Second)
- $\mathbf{V}_{\mathbf{0 . 8}}$ Velocity at 0.8 Times Depth of Flow (Meter per Second)
- $\mathbf{v}_{\mathbf{a v g}}$ Average Velocity along Path (Meter per Second)
- $\mathbf{V}_{\mathbf{b}}$ Boat Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{f}}$ Flow Velocity (Meter per Second)
- $\mathbf{v}_{\mathbf{p}}$ Component of Flow Velocity in Sound Path (Meter per Second)
- $\mathbf{V}_{\mathbf{S}}$ Surface Velocity of River (Meter per Second)
- $\mathbf{V}_{\text {shear }}$ Shear Velocity (Meter per Second)
- W Width between Two Verticals (Meter)
- y Height above Bed (Meter)
- $\mathbf{y}_{\mathbf{i}}$ Depth 'yi' of Flow in Sub-Area (Meter)
- $\mathbf{y}_{\mathbf{i}+1}$ Depth 'i+1' of Flow in Sub-Area (Meter)
- $\mathbf{\Delta} \mathbf{Q}_{\mathbf{i}}$ Partial Discharges (Cubic Meter per Second)
- Δt Time of Transit between Two Verticals (Second)
- $\boldsymbol{\theta}$ Angle (Degree)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: log10, log10(Number)

Common logarithm function (base 10)

- Function: sin, sin(Angle)

Trigonometric sine function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Abstractions from Precipitation Formulas
- Area-Velocity and Ultrasonic Method of Streamflow Measurement Formulas
- Indirect Methods of Streamflow Measurement Formulas
- Losses from Precipitation Formulas
- Measurement of Evapotranspiration Formulas $\sqrt{\Omega}$
- Precipitation Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

