
calculatoratoz.com

unitsconverters.com

Empirical Equations of Runoff Volume Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Empirical Equations of Runoff Volume Formulas

Empirical Equations of Runoff Volume ©

Inglis and Dsouza Formula (1929)

1) Equation for Runoff for Deccan Plateau
$f \mathrm{f}=\left(\frac{1}{254}\right) \cdot \mathrm{P} \cdot(\mathrm{P}-17.8)$
Open Calculator 〔
ex $16.88976 \mathrm{~cm}=\left(\frac{1}{254}\right) \cdot 75 \mathrm{~cm} \cdot(75 \mathrm{~cm}-17.8)$
2) Equation for Runoff for Ghat Regions of Western India
$f \mathrm{f} R=0.85 \cdot \mathrm{P}-30.5$
Open Calculator
ex $33.25 \mathrm{~cm}=0.85 \cdot 75 \mathrm{~cm}-30.5$
Barlow's Formula (1915) ©
3) Barlow's Formula for Runoff
$f \mathrm{fx}=\mathrm{K}_{\mathrm{b}} \cdot \mathrm{P}$
ex $11.25 \mathrm{~cm}=0.15 \cdot 75 \mathrm{~cm}$
4) Barlow's Formula for Runoff in Average Catchment with Average or Varying Rainfall
$f \mathrm{fx}=0.20 \cdot \mathrm{P}$
Open Calculator
ex $15 \mathrm{~cm}=0.20 \cdot 75 \mathrm{~cm}$
5) Barlow's Formula for Runoff in Average Catchment with Continuous Downpour
$f \times \mathrm{R}=0.32 \cdot \mathrm{P}$
Open Calculator
ex $24 \mathrm{~cm}=0.32 \cdot 75 \mathrm{~cm}$
6) Barlow's Formula for Runoff in Average Catchment with Light Rain
$f \mathrm{x} R=0.16 \cdot \mathrm{P}$
Open Calculator
$\mathrm{ex} 12 \mathrm{~cm}=0.16 \cdot 75 \mathrm{~cm}$
7) Barlow's Formula for Runoff in Flat Cultivated and Absorbent Soils with Average or Varying Rainfall
$f \mathrm{fx}=0.10 \cdot \mathrm{P}$
ex $7.5 \mathrm{~cm}=0.10 \cdot 75 \mathrm{~cm}$
8) Barlow's Formula for Runoff in Flat Cultivated and Absorbent Soils with Continuous Downpour
$f \mathrm{f} R=0.15 \cdot \mathrm{P}$
ex $11.25 \mathrm{~cm}=0.15 \cdot 75 \mathrm{~cm}$
9) Barlow's Formula for Runoff in Flat Cultivated and Absorbent Soils with Light Rain

$$
f \times R=0.07 \cdot P
$$

ex $5.25 \mathrm{~cm}=0.07 \cdot 75 \mathrm{~cm}$
10) Barlow's Formula for Runoff in Flat Partly Cultivated Stiff Soils with Average or Varying Rainfall
$f \mathrm{f} R=0.15 \cdot \mathrm{P}$
Open Calculator
ex $11.25 \mathrm{~cm}=0.15 \cdot 75 \mathrm{~cm}$
11) Barlow's Formula for Runoff in Flat Partly Cultivated Stiff Soils with Continuous Downpour
$f \mathrm{f} R=0.18 \cdot \mathrm{P}$
Open Calculator
ex $13.5 \mathrm{~cm}=0.18 \cdot 75 \mathrm{~cm}$
12) Barlow's Formula for Runoff in Flat Partly Cultivated Stiff Soils with Light Rain
$f \mathrm{f} R=0.12 \cdot \mathrm{P}$
Open Calculator
ex $9 \mathrm{~cm}=0.12 \cdot 75 \mathrm{~cm}$
13) Barlow's Formula for Runoff in Hills and Plains with Little Cultivation and Continuous Downpour
$f \times R=0.60 \cdot P$
ex $45 \mathrm{~cm}=0.60 \cdot 75 \mathrm{~cm}$
14) Barlow's Formula for Runoff in Hills and Plains with Little Cultivation and Light Rainfall
$f \mathrm{f} R=0.28 \cdot \mathrm{P}$
Open Calculator
ex $21 \mathrm{~cm}=0.28 \cdot 75 \mathrm{~cm}$
15) Formula for Runoff in Hills and Plains with Little Cultivation and Average or Varying Rainfall
fx $\mathrm{R}=0.35 \cdot \mathrm{P}$
Open Calculator
ex $26.25 \mathrm{~cm}=0.35 \cdot 75 \mathrm{~cm}$
16) Formula for Runoff in Very Hilly, Steep and Hardly any Cultivation Catchment with Light Rain
$f \mathrm{f} R=0.36 \cdot \mathrm{P}$
Open Calculator
ex $27 \mathrm{~cm}=0.36 \cdot 75 \mathrm{~cm}$
17) Runoff in Very Hilly, Steep and Hardly any Cultivation Catchment with Average or Varying Rainfall
$f \mathrm{x} R=0.45 \cdot \mathrm{P}$
ex $33.75 \mathrm{~cm}=0.45 \cdot 75 \mathrm{~cm}$
18) Runoff in Very Hilly, Steep and Hardly any Cultivation Catchment with Continuous Downpour
$f \mathrm{f} R=0.81 \cdot \mathrm{P}$
Open Calculator
ex $60.75 \mathrm{~cm}=0.81 \cdot 75 \mathrm{~cm}$
Khoslas's Formula (1960)
19) Mean Monthly Temperature of Catchment given Monthly Losses
$f \mathrm{fx} \mathrm{T}_{\mathrm{f}}=\frac{\mathrm{L}_{\mathrm{m}}}{0.48}$
Open Calculator
ex $29.16667^{\circ} \mathrm{C}=\frac{14 \mathrm{~cm}}{0.48}$
20) Monthly Losses given Mean Monthly Temperature of Catchment
$f \mathrm{f} \mathrm{L}_{\mathrm{m}}=0.48 \cdot \mathrm{~T}_{\mathrm{f}}$
Open Calculator
ex $14.4 \mathrm{~cm}=0.48 \cdot 30^{\circ} \mathrm{C}$
21) Monthly Losses using Monthly Runoff

$f x L_{m}=P_{m}-R_{m}$

ex $14 \mathrm{~cm}=32 \mathrm{~cm}-18 \mathrm{~cm}$
22) Monthly Precipitation given Monthly Runoff
$f \mathrm{x} \mathrm{P}_{\mathrm{m}}=\mathrm{R}_{\mathrm{m}}+\mathrm{L}_{\mathrm{m}}$
ex $32 \mathrm{~cm}=18 \mathrm{~cm}+14 \mathrm{~cm}$
23) Monthly Runoff
fx $R_{m}=P_{m}-L_{m}$
ex $18 \mathrm{~cm}=32 \mathrm{~cm}-14 \mathrm{~cm}$

Variables Used

- K_{b} Barlow's Runoff Coefficient
- L_{m} Monthly Losses (Centimeter)
- P Rainfall (Centimeter)
- $\mathbf{P}_{\mathbf{m}}$ Monthly Rainfall (Centimeter)
- \mathbf{R} Runoff (Centimeter)
- $\mathbf{R}_{\mathbf{m}}$ Monthly Runoff (Centimeter)
- \mathbf{T}_{f} Mean Monthly Temperature (Celsius)

Constants, Functions, Measurements used

- Measurement: Length in Centimeter (cm)

Length Unit Conversion $\sqrt{ }$

- Measurement: Temperature in Celsius $\left({ }^{\circ} \mathrm{C}\right)$ Temperature Unit Conversion

Check other formula lists

- Empirical Equations of Runoff Volume Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

