

Empirical Equations of Runoff Volume Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Empirical Equations of Runoff Volume Formulas

Empirical Equations of Runoff Volume &

Inglis and Dsouza Formula (1929)

1) Equation for Runoff for Deccan Plateau

/ 1 \

Open Calculator

 $\mathbf{R} = \left(\frac{1}{254}\right) \cdot \mathbf{P} \cdot (\mathbf{P} - 17.8)$ $\mathbf{EX} = \left(\frac{1}{254}\right) \cdot \mathbf{P} \cdot (\mathbf{P} - 17.8)$

(-3-)

2) Equation for Runoff for Ghat Regions of Western India

fx $m [R=0.85\cdot P-30.5]$

Open Calculator 🖒

 $23.25 \text{cm} = 0.85 \cdot 75 \text{cm} - 30.5$

Barlow's Formula (1915) 🗗

3) Barlow's Formula for Runoff

fx $R = K_b \cdot P$

Open Calculator

 $\boxed{\textbf{ex} \ 11.25 \text{cm} = 0.15 \cdot 75 \text{cm}}$

4) Barlow's Formula for Runoff in Average Catchment with Average or Varying Rainfall

fx $m R = 0.20 \cdot P$

Open Calculator

 $|\mathbf{ex}| 15 \text{cm} = 0.20 \cdot 75 \text{cm}$

5) Barlow's Formula for Runoff in Average Catchment with Continuous Downpour

fx $m R = 0.32 \cdot P$

Open Calculator

 $\texttt{ex} \ 24 \text{cm} = 0.32 \cdot 75 \text{cm}$

6) Barlow's Formula for Runoff in Average Catchment with Light Rain

fx $R=0.16\cdot P$

Open Calculator 🚰

 $2cm = 0.16 \cdot 75cm$

7) Barlow's Formula for Runoff in Flat Cultivated and Absorbent Soils with Average or Varying Rainfall

fx $m R = 0.10 \cdot P$

Open Calculator 🗗

 $\boxed{7.5\text{cm} = 0.10 \cdot 75\text{cm}}$

8) Barlow's Formula for Runoff in Flat Cultivated and Absorbent Soils with Continuous Downpour

fx $R = 0.15 \cdot P$

Open Calculator

ex $11.25 \text{cm} = 0.15 \cdot 75 \text{cm}$

9) Barlow's Formula for Runoff in Flat Cultivated and Absorbent Soils with Light Rain

Open Calculator

 $= 5.25 cm = 0.07 \cdot 75 cm$

10) Barlow's Formula for Runoff in Flat Partly Cultivated Stiff Soils with Average or Varying Rainfall

fx $R = 0.15 \cdot P$

Open Calculator

 $11.25 \text{cm} = 0.15 \cdot 75 \text{cm}$

11) Barlow's Formula for Runoff in Flat Partly Cultivated Stiff Soils with Continuous Downpour

fx $R = 0.18 \cdot P$

Open Calculator

 $\boxed{13.5\text{cm} = 0.18 \cdot 75\text{cm}}$

12) Barlow's Formula for Runoff in Flat Partly Cultivated Stiff Soils with Light Rain

fx $R = 0.12 \cdot P$

Open Calculator

 $9 \text{cm} = 0.12 \cdot 75 \text{cm}$

13) Barlow's Formula for Runoff in Hills and Plains with Little Cultivation and Continuous Downpour

fx $R = 0.60 \cdot P$

Open Calculator 🖸

 $45cm = 0.60 \cdot 75cm$

14) Barlow's Formula for Runoff in Hills and Plains with Little Cultivation and Light Rainfall

fx $R = 0.28 \cdot P$

Open Calculator

 $\mathbf{ex} \ 21\mathrm{cm} = 0.28 \cdot 75\mathrm{cm}$

15) Formula for Runoff in Hills and Plains with Little Cultivation and Average or Varying Rainfall

fx $m [R=0.35\cdot P]$

Open Calculator 🗗

 $\texttt{ex} \ 26.25 \text{cm} = 0.35 \cdot 75 \text{cm}$

16) Formula for Runoff in Very Hilly, Steep and Hardly any Cultivation Catchment with Light Rain

fx $R=0.36\cdot P$

Open Calculator

 $27cm = 0.36 \cdot 75cm$

17) Runoff in Very Hilly, Steep and Hardly any Cultivation Catchment with Average or Varying Rainfall

fx $m R = 0.45 \cdot P$

Open Calculator 🗗

 $\mathbf{ex} \ 33.75 \text{cm} = 0.45 \cdot 75 \text{cm}$

18) Runoff in Very Hilly, Steep and Hardly any Cultivation Catchment with Continuous Downpour

fx $R = 0.81 \cdot P$

Open Calculator

 $60.75 \text{cm} = 0.81 \cdot 75 \text{cm}$

Khoslas's Formula (1960)

19) Mean Monthly Temperature of Catchment given Monthly Losses

 $ag{T_{
m f}} = rac{
m L_m}{0.48}$

Open Calculator

ex $29.16667^{\circ} C = \frac{14 \text{cm}}{0.48}$

20) Monthly Losses given Mean Monthly Temperature of Catchment

fx $[\mathrm{L_m} = 0.48 \cdot \mathrm{T_f}]$

Open Calculator

21) Monthly Losses using Monthly Runoff

fx $L_{
m m}=P_{
m m}-R_{
m m}$

Open Calculator

- $\boxed{14\mathrm{cm} = 32\mathrm{cm} 18\mathrm{cm}}$
- 22) Monthly Precipitation given Monthly Runoff
- fx $P_{
 m m}=R_{
 m m}+L_{
 m m}$

Open Calculator

Open Calculator

- $\mathbf{ex} \ 32\mathrm{cm} = 18\mathrm{cm} + 14\mathrm{cm}$
- 23) Monthly Runoff
- fx $R_{m} = P_{m} L_{m}$
- ex 18cm = 32cm 14cm

Variables Used

- K_b Barlow's Runoff Coefficient
- L_m Monthly Losses (Centimeter)
- P Rainfall (Centimeter)
- P_m Monthly Rainfall (Centimeter)
- R Runoff (Centimeter)
- R_m Monthly Runoff (Centimeter)
- **T**_f Mean Monthly Temperature (*Celsius*)

Constants, Functions, Measurements used

- Measurement: Length in Centimeter (cm)
 Length Unit Conversion
- Measurement: Temperature in Celsius (°C)
 Temperature Unit Conversion

Check other formula lists

Empirical Equations of Runoff
 Volume Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/23/2024 | 4:05:55 AM UTC

Please leave your feedback here...

