
calculatoratoz.com

unitsconverters.com

Time Value of Money Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 43 Time Value of Money Formulas

Time Value of Money ©

1) Annuity Due Payment using Future Value
$\mathbf{f x} \mathrm{P}_{\mathrm{D}}=\frac{\mathrm{FV} \cdot \frac{\mathrm{r}}{\left((1+\mathrm{r})^{t}\right)-1}}{1+\mathrm{r}}$

2) Doubling Time
f. $\mathrm{DT}=\log 10 \frac{2}{\log 10}\left(1+\frac{\% \text { RoR }}{100}\right)$

Open Calculator
ex $15.7473=\log 10 \frac{2}{\log 10}\left(1+\frac{4.5}{100}\right)$
3) Doubling Time (Continuous Compounding)
$\mathrm{fx} \mathrm{DT}_{\mathrm{CC}}=\frac{\ln (2)}{\frac{\% \mathrm{RoR}}{100}}$
Open Calculator
ex 15.40327 Year $=\frac{\ln (2)}{\frac{4.5}{100}}$
4) Doubling Time (Simple Interest)
$f \times \mathrm{DT}_{\mathrm{SI}}=\frac{100}{\% \mathrm{i}}$
$\mathrm{ex} 14.28571 \mathrm{Year}=\frac{100}{7}$
5) Hamada Equation
$f_{\mathrm{x}} \beta_{\mathrm{L}}=\beta_{\mathrm{UL}} \cdot\left(1+\left(1-\mathrm{T}_{\%}\right) \cdot \mathrm{R}_{\mathrm{D} / \mathrm{E}}\right)$
Open Calculator
ex $272.16=7.2 \cdot(1+(1-0.08) \cdot 40)$
6) Number of Periods
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{n}} \mathrm{n}_{\text {Periods }}=\frac{\ln \left(\frac{\mathrm{FV}}{\mathrm{PV}}\right)}{\ln (1+\mathrm{r})}$
ex $118.8578=\frac{\ln \left(\frac{33000}{100}\right)}{\ln (1+0.05)}$
7) Perpetuity Payment
$\mathrm{fx}_{\mathrm{x}} \mathrm{PMT}_{\text {perpetuity }}=\mathrm{PV} \cdot \mathrm{r}$
ex $5=100 \cdot 0.05$
8) Perpetuity Yield
$f \times Y=\frac{\mathrm{PMT}_{\text {perpetuity }}}{\mathrm{PV}}$
ex $0.05=\frac{5}{100}$
9) Rule of 69
$f \times D T=\frac{69}{i}$
ex $3.45=\frac{69}{20}$

10) Rule of 72 亿

$f \times$ Rule of $72=\frac{72}{i}$
ex $3.6=\frac{72}{20}$

Future value ©

11) Annuity Due for Future Value

$$
\mathrm{fx}_{\mathrm{x}}^{\mathrm{FV}} \mathrm{AD}=\mathrm{PMT} \cdot \frac{(1+\mathrm{r})^{\mathrm{n}_{\text {Periods }}}-1}{\mathrm{r}} \cdot(1+\mathrm{r})
$$

ex $129.15=60 \cdot \frac{(1+0.05)^{2}-1}{0.05} \cdot(1+0.05)$
12) Annuity Payment using Future Value

ex $561365.9=\frac{57540}{\left((1+0.05)^{2}\right)-1}$
13) Future Value Factor \square
$f \mathbf{x} \mathrm{~F}_{\mathrm{FV}}=(1+\mathrm{r})^{\mathrm{n}}-\{$ Periods $\}$
ex $1.1025=(1+0.05)^{2}$
14) Future Value of Annuity

$$
\mathrm{FV}_{\mathrm{A}}=\left(\frac{\mathrm{p}}{\mathrm{IR} \cdot 0.01}\right) \cdot\left((1+(\mathrm{IR} \cdot 0.01))^{\mathrm{n}}-\{\text { Periods }\}-1\right)
$$

ex $57540=\left(\frac{28000}{5.5 \cdot 0.01}\right) \cdot\left((1+(5.5 \cdot 0.01))^{2}-1\right)$
15) Future Value of Annuity with Continuous Compounding
$f \times \mathrm{FV}_{\mathrm{ACC}}=\mathrm{C}_{\mathrm{f}} \cdot\left(\frac{e^{\mathrm{r} \cdot \mathrm{n}_{\text {Periods }}}-1}{e^{\mathrm{r}}-1}\right)$
Open Calculator
ex $3076.907=1500 \cdot\left(\frac{e^{0.05 \cdot 2}-1}{e^{0.05}-1}\right)$
16) Future Value of Growing Annuity
$\mathbf{f x} \mathrm{FV}_{\mathrm{GA}}=\mathrm{II} \cdot \frac{(1+\mathrm{r})^{\mathrm{n}_{\text {Periods }}}-(1+\mathrm{g})^{\mathrm{n}_{\text {Periods }}}}{\mathrm{r}-\mathrm{g}}$
$\mathbf{e x} 4140=2000 \cdot \frac{(1+0.05)^{2}-(1+0.02)^{2}}{0.05-0.02}$
17) Future Value of Lumpsum
$f_{\mathrm{x}} \mathrm{FV}_{\mathrm{L}}=\mathrm{PV} \cdot\left(1+\mathrm{IR}_{\mathrm{P}}\right)^{\mathrm{n}}-\{$ Periods $\}$
Open Calculator
ex $112.36=100 \cdot(1+0.06)^{2}$

Time Value of Money Formulas...

18) Future Value of Ordinary Annuities and Sinking Funds
$f \times F V_{O}=C_{f} \cdot \frac{(1+r)^{n_{c}}-1}{r}$
Open Calculator
ex $29397.95=1500 \cdot \frac{(1+0.05)^{14}-1}{0.05}$
19) Future Value of Present Sum given Compounding Periods
$\mathrm{fx} \mathrm{FV}=\mathrm{PV} \cdot\left(1+\left(\frac{\% R o R \cdot 0.01}{\mathrm{C}_{\mathrm{n}}}\right)\right)^{\mathrm{C}_{\mathrm{n}} \cdot \mathrm{n}_{\text {Periods }}}$
Open Calculator [3]
ex $109.3973=100 \cdot\left(1+\left(\frac{4.5 \cdot 0.01}{11}\right)\right)^{11 \cdot 2}$
20) Future Value of Present Sum given Number of Periods
$\mathrm{fx} \mathrm{FV}=\mathrm{PV} \cdot \exp \left(\%\right.$ RoR $\left.\cdot \mathrm{n}_{\text {Periods }} \cdot 0.01\right)$
Open Calculator
ex $109.4174=100 \cdot \exp (4.5 \cdot 2 \cdot 0.01)$
21) Future Value of Present Sum given Total Number of Periods
$\mathrm{FV}=\mathrm{PV} \cdot(1+(\% \text { RoR } \cdot 0.01))^{\mathrm{n}}-\{$ Periods $\}$
ex $109.2025=100 \cdot(1+(4.5 \cdot 0.01))^{2}$

22) Future Value with Continuous Compounding $\boxed{\Omega}$

$f \mathrm{~F} \mathrm{FV}_{\mathrm{CC}}=\mathrm{PV} \cdot\left(e^{\% R o R \cdot \mathrm{n}_{\mathrm{cp}} \cdot 0.01}\right)$

Open Calculator

$$
\mathbf{e x} 114.4537=100 \cdot\left(e^{4.5 \cdot 3 \cdot 0.01}\right)
$$

23) Growing Annuity Payment using Future Value
$f \mathbf{f} \mathrm{PMT}_{\text {initial }}=\frac{\mathrm{FV} \cdot(\mathrm{r}-\mathrm{g})}{\left((1+\mathrm{r})^{\mathrm{n}_{\text {Periods }}}\right)-\left((1+\mathrm{g})^{\mathrm{n}_{\text {Periods }}}\right)}$
Open Calculator 〔
ex $15942.03=\frac{33000 \cdot(0.05-0.02)}{\left((1+0.05)^{2}\right)-\left((1+0.02)^{2}\right)}$
24) Number of Periods using Future Value
$f \mathrm{x} \mathrm{n}_{\text {Periods }}=\frac{\left.\left(1 \mathrm{C}_{\mathrm{f}}\right)\right)}{\ln (1+\mathrm{r})}$
Open Calculator
$\operatorname{ex} 21.94906=\frac{\ln \left(1+\left(\frac{57540 \cdot 0.05}{1500}\right)\right)}{\ln (1+0.05)}$

Present value

25) Annuity Due for Present Value
$f x$
$\mathrm{PV}_{\mathrm{AD}}=\mathrm{PMT} \cdot\left(\frac{1-\left(\frac{1}{(1+\mathrm{r})^{\mathrm{n} \text { Periods }}}\right)}{\mathrm{r}}\right) \cdot(1+\mathrm{r})$
ex $117.1429=60 \cdot\left(\frac{1-\left(\frac{1}{(1+0.05)^{2}}\right)}{0.05}\right) \cdot(1+0.05)$
26) Growing Annuity Payment using Present Value 〔
$f x$
Open Calculator
$\mathrm{PMT}_{\text {initial }}=\mathrm{PV} \cdot\left(\frac{\mathrm{r}-\mathrm{g}}{1-\left(\left(\frac{1+\mathrm{g}}{1+\mathrm{r}}\right)^{\mathrm{n}}-\{\text { Periods }\}\right)}\right)$
ex $53.26087=100 \cdot\left(\frac{0.05-0.02}{1-\left(\left(\frac{1+0.02}{1+0.05}\right)^{2}\right)}\right)$
27) Number of Periods using Present Value of Annuity
$f_{\mathrm{x}} \mathrm{t}=\frac{\ln \left(\left(1-\left(\frac{\text { PVAnnuity }^{C_{f}}}{}\right)\right)^{-1}\right)}{\ln (1+\mathrm{r})}$
$\operatorname{ex} 74.28425=\frac{\ln \left(\left(1-\left(\frac{1460}{1500}\right)\right)^{-1}\right)}{\ln (1+0.05)}$
28) Present Value Continuous Compounding Factor
$f_{\mathrm{x}} \mathrm{F}_{\mathrm{PV}}=\left(e^{-\mathrm{r} \cdot \mathrm{t}}\right)$
ex $0.67032=\left(e^{-0.05 \cdot 8}\right)$
29) Present Value Factor
$f \times \mathrm{F}_{\mathrm{PVA}}=\frac{1-\left((1+r)^{-\mathrm{n}_{\text {Periods }}}\right)}{\mathrm{r}}$
Open Calculator
$\operatorname{ex} 1.85941=\frac{1-\left((1+0.05)^{-2}\right)}{0.05}$
30) Present Value for Continuous Compounding
$f \mathrm{P} \mathrm{PV}_{\mathrm{cc}}=\frac{\mathrm{FV}}{e^{\mathrm{r} \cdot \mathrm{n}_{\text {Periods }}}}$
Open Calculator
ex $29859.63=\frac{33000}{e^{0.05 \cdot 2}}$

Time Value of Money Formulas...
31) Present Value of Annuity

$$
\text { PVAnnuity }=\left(\frac{\mathrm{p}}{\mathrm{IR}}\right) \cdot\left(1-\left(\frac{1}{(1+\mathrm{IR})^{\mathrm{n}}}-\{\text { Months }\}\right)\right)
$$

ex $5090.909=\left(\frac{28000}{5.5}\right) \cdot\left(1-\left(\frac{1}{(1+5.5)^{13}}\right)\right)$

32) Present Value of Annuity with Continuous Compounding

$f \times$ PVAnnuity $=\mathrm{C}_{\mathrm{f}} \cdot\left(\frac{1-e^{-\mathrm{r} \cdot \mathrm{n}_{\text {Periods }}}}{e^{\mathrm{r}}-1}\right)$
Open Calculator
ex $2784.1=1500 \cdot\left(\frac{1-e^{-0.05 \cdot 2}}{e^{0.05}-1}\right)$
33) Present Value of Deferred Annuity
fx
$P V_{D A}=P_{O} \cdot \frac{1-(1+(\mathrm{IR} \cdot 0.01))^{-\mathrm{n}}-\{\text { Periods }\}}{\left(1+(\mathrm{IR} \cdot 0.01)^{\mathrm{t}}-\{\mathrm{d}\} \cdot(\mathrm{IR} \cdot 0.01)\right)}$
ex $253.869=2500 \cdot \frac{1-(1+(5.5 \cdot 0.01))^{-2}}{\left(1+(5.5 \cdot 0.01)^{9} \cdot(5.5 \cdot 0.01)\right)}$
34) Present Value of Deferred Annuity based on Annuity Due

$$
\mathrm{PV}_{\mathrm{DA}}=\mathrm{P}_{\mathrm{D}} \cdot \frac{1-(1+(\mathrm{IR} \cdot 0.01))^{-\mathrm{n}}-\{\text { Periods }\}}{(1+(\mathrm{IR} \cdot 0.01))^{\mathrm{t}_{\mathrm{d}}-1} \cdot(\mathrm{IR} \cdot 0.01)}
$$

ex

$$
\frac{1-(1+(5.5 \cdot 0.01))^{-2}}{+(5.5 \cdot 0.01))^{9-1} \cdot(5.5 \cdot 0.01)}
$$

35) Present Value of Future Sum given compounding periods $\boxed{\square}$

$$
f \times \mathrm{PV}=\frac{\mathrm{FV}}{\left(1+\left(\frac{\% R o R}{C_{n}}\right)\right)^{\mathrm{C}_{\mathrm{n}} \cdot n_{\text {Periods }}}}
$$

$$
\text { ex } 17.45242=\frac{33000}{\left(1+\left(\frac{4.5}{11}\right)\right)^{11 \cdot 2}}
$$

36) Present Value of Future Sum given Number of Periods
$f \times \mathrm{PV}=\frac{\mathrm{FV}}{\exp \left(\% \mathrm{RoR} \cdot \mathrm{n}_{\text {Periods }}\right)}$
Open Calculator
$\operatorname{ex} 4.072524=\frac{33000}{\exp (4.5 \cdot 2)}$
37) Present Value of Future Sum given Total Number of Periods
$\boxed{\square}$
$f \mathrm{x} P \mathrm{PV}=\frac{\mathrm{FV}}{(1+\mathrm{IR})^{\mathrm{t}}}$
ex $0.010356=\frac{33000}{(1+5.5)^{8}}$
38) Present Value of Growing Annuity
$\mathrm{fx}_{\mathrm{x}} \mathrm{PV}_{\mathrm{ga}}=\left(\frac{\mathrm{II}}{\mathrm{r}-\mathrm{g}}\right) \cdot\left(1-\left(\frac{1+\mathrm{g}}{1+\mathrm{r}}\right)^{\mathrm{n}_{\text {Periods }}}\right)$
Open Calculator
39) Present Value of Lumpsum
$f \times \mathrm{PV}_{\mathrm{L}}=\frac{\mathrm{FV}}{\left(1+\mathrm{IR}_{\mathrm{P}}\right)^{\mathrm{n}}}-\{$ Periods $\}$
Open Calculator

$$
\text { ex } 3755.102=\left(\frac{2000}{0.05-0.02}\right) \cdot\left(1-\left(\frac{1+0.02}{1+0.05}\right)^{2}\right)
$$

40) Present Value of Ordinary Annuities and Amortization
$f \mathrm{fx}=\mathrm{PV}=\mathrm{PMT} \cdot\left(\frac{1-(1+\mathrm{r})^{-\mathrm{n}_{\mathrm{c}}}}{\mathrm{r}}\right)$
ex $593.9185=60 \cdot\left(\frac{1-(1+0.05)^{-14}}{0.05}\right)$
41) Present Value of Stock with Constant Growth
$\mathrm{fx} \mathrm{P}=\frac{\mathrm{D} 1}{(\% \mathrm{RoR} \cdot 0.01)-\mathrm{g}}$
Open Calculator 〔
ex $10=\frac{0.25}{(4.5 \cdot 0.01)-0.02}$
42) Present Value of Stock with Zero Growth
f* $P=\frac{D}{\% R o R}$
ex $7.777778=\frac{35}{4.5}$
43) PV of Perpetuity $\boxed{\Omega}$
f. $\mathrm{PV}_{\mathrm{p}}=\frac{\mathrm{D}}{\mathrm{DR}}$
ex $291.6667=\frac{35}{0.12}$

Variables Used

- \%i Annual Interest Rate
- \%RoR Rate of Return
- \mathbf{C}_{f} Cashflow per Period
- $\mathbf{C}_{\mathbf{n}}$ Compounding Periods
- D Dividend
- D1 Estimated Dividends for Next Period
- DR Discount Rate
- DT Doubling Time
- DT ${ }_{\text {cc }}$ Doubling Time Continuous Compounding (Year)
- DT ${ }_{\text {SI }}$ Doubling Time Simple Interest (Year)
- $F_{F V}$ Future Value Factor
- FPV PV Continuous Compounding Factor
- FPVA Annuity Present Value Factor
- FV Future Value
- $\mathrm{FV}_{\mathbf{A}}$ Future Value of Annuity
- $\mathrm{FV}_{\mathrm{ACC}} \mathrm{FV}$ of Annuity with Continuous Compounding
- $\mathrm{FV}_{\mathrm{AD}}$ Annuity Due Future Value
- $\mathrm{FV}_{\mathrm{CC}}$ Future Value with Continuous Compounding
- $\mathrm{FV}_{\mathbf{G A}}$ Future Value of Growing Annuity
- FV_{L} Future Value of Lumpsum
- F_{0} Future Value of Ordinary Annuity
- g Growth Rate
- i Rate of Interest as Whole Number
- II Initial Investment
- IR Interest Rate
- IR $\mathbf{P}_{\mathbf{P}}$ Interest Rate per Period
- $\mathbf{n}_{\mathbf{c}}$ Total Number of Times Compounded
- $\mathbf{n}_{\mathbf{c p}}$ Number of Compounding Periods
- $\mathbf{n}_{\text {Months }}$ Number of Months
- $\mathbf{n}_{\text {Periods }}$ Number of Periods
- P Monthly Payment
- P Price of Stock
- P_{D} Annuity Payment Due
- $\mathbf{P O}_{\mathrm{O}}$ Ordinary Annuity Payment
- PMT Payment made in Each Period
- PMT Annuity Annuity Payment
- $\mathbf{P M T}_{\text {initial }}$ Initial Payment
- PMT ${ }_{\text {perpetuity }}$ Perpetuity Payment
- PV Present Value
- $\mathrm{PV}_{\text {AD }}$ Annuity Due Present Value
- PV $_{\mathbf{c c}}$ Present Value with Continuous Compounding
- PV DA Present Value of Deferred Annuity
- PV $_{\text {ga }}$ Present Value of Growing Annuity
- PV_{L} Present Value of Lumpsum
- PV_{p} PV of Perpetuity
- PVAnnuity Present Value of Annuity
- r Rate per Period
- $R_{D / E}$ Debt to Equity (D/E)
- Rule of 72 Rule of 72
- t Total Number of Periods
- T\% Tax Rate
- $\mathbf{t}_{\mathbf{d}}$ Deferred Periods
- Y Perpetuity Yield
- $\boldsymbol{\beta}_{\mathrm{L}}$ Leveraged Beta
- $\beta_{\text {UL }}$ Unleveraged Beta

Constants, Functions, Measurements used

- Constant: e, 2.71828182845904523536028747135266249

Napier's constant

- Function: exp, exp(Number)
n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Function: log10, log10(Number)

The common logarithm, also known as the base-10 logarithm or the decimal logarithm, is a mathematical function that is the inverse of the exponential function.

- Measurement: Time in Year (Year)

Time Unit Conversion

Check other formula lists

- Capital Budgeting Formulas • Debt Management Formulas
- Cash Management Formulas
- Time Value of Money Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

