
calculatoratoz.com

Hydrologic Routing Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 22 Hydrologic Routing Formulas

Hydrologic Routing $\mathbb{}$

Hydrologic Channel Routing

1) Equation for Linear Storage or Linear Reservoir
$f \times S=K \cdot Q$
Open Calculator
ex $100 \mathrm{~m}^{3}=4 \cdot 25 \mathrm{~m}^{3} / \mathrm{s}$
2) Outflow given Linear Storage
$f \times \mathrm{Q}=\frac{\mathrm{S}}{\mathrm{K}}$
Open Calculator
ex $25 \mathrm{~m}^{3} / \mathrm{s}=\frac{100 \mathrm{~m}^{3}}{4}$
3) Storage during Beginning of Time Interval for Continuity Equation of Reach $\boxed{\square}$
$\mathrm{fx} \mathrm{S}_{1}=\mathrm{S}_{2}+\left(\frac{\mathrm{Q}_{2}+\mathrm{Q}_{1}}{2}\right) \cdot \Delta \mathrm{t}-\left(\frac{\mathrm{I}_{2}+\mathrm{I}_{1}}{2}\right) \cdot \Delta \mathrm{t}$
Open Calculator
ex $15=35+\left(\frac{64 \mathrm{~m}^{3} / \mathrm{s}+48 \mathrm{~m}^{3} / \mathrm{s}}{2}\right) \cdot 5 \mathrm{~s}-\left(\frac{65 \mathrm{~m}^{3} / \mathrm{s}+55 \mathrm{~m}^{3} / \mathrm{s}}{2}\right) \cdot 5 \mathrm{~s}$
4) Storage during End of Time Interval in Continuity Equation for Reach

$$
\begin{aligned}
& f \mathrm{fx} \mathrm{~S}_{2}=\left(\frac{\mathrm{I}_{2}+\mathrm{I}_{1}}{2}\right) \cdot \Delta \mathrm{t}-\left(\frac{\mathrm{Q}_{2}+\mathrm{Q}_{1}}{2}\right) \cdot \Delta \mathrm{t}+\mathrm{S}_{1} \\
& \mathrm{ex} 35=\left(\frac{65 \mathrm{~m}^{3} / \mathrm{s}+55 \mathrm{~m}^{3} / \mathrm{s}}{2}\right) \cdot 5 \mathrm{~s}-\left(\frac{64 \mathrm{~m}^{3} / \mathrm{s}+48 \mathrm{~m}^{3} / \mathrm{s}}{2}\right) \cdot 5 \mathrm{~s}+15
\end{aligned}
$$

5) Storage during end of time interval in Muskingum method of Routing
$f \mathbf{x}$
$S_{2}=K \cdot\left(x \cdot\left(I_{2}-I_{1}\right)+(1-x) \cdot\left(Q_{2}-Q_{1}\right)\right)+S_{1}$

Open Calculator [
ex
$35.8=4 \cdot\left(1.8 \cdot\left(65 \mathrm{~m}^{3} / \mathrm{s}-55 \mathrm{~m}^{3} / \mathrm{s}\right)+(1-1.8) \cdot\left(64 \mathrm{~m}^{3} / \mathrm{s}-48 \mathrm{~m}^{3} / \mathrm{s}\right)\right)+15$
6) Storage in Beginning of Time Interval

fx

Open Calculator

$$
\mathrm{S}_{1}=\mathrm{S}_{2}-\left(\mathrm{K} \cdot\left(\mathrm{x} \cdot\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+(1-\mathrm{x}) \cdot\left(\mathrm{Q}_{2}-\mathrm{Q}_{1}\right)\right)\right)
$$

ex

$$
14.2=35-\left(4 \cdot\left(1.8 \cdot\left(65 \mathrm{~m}^{3} / \mathrm{s}-55 \mathrm{~m}^{3} / \mathrm{s}\right)+(1-1.8) \cdot\left(64 \mathrm{~m}^{3} / \mathrm{s}-48 \mathrm{~m}^{3} / \mathrm{s}\right)\right)\right)
$$

7) Total Wedge Storage in Channel Reach
$f_{\mathrm{x}} \mathrm{S}=\mathrm{K} \cdot\left(\mathrm{x} \cdot \mathrm{I}^{\mathrm{m}}+(1-\mathrm{x}) \cdot \mathrm{Q}^{\mathrm{m}}\right)$
Open Calculator
ex $99.11748 \mathrm{~m}^{3}=4 \cdot\left(1.8 \cdot\left(28 \mathrm{~m}^{3} / \mathrm{s}\right)^{0.94}+(1-1.8) \cdot\left(25 \mathrm{~m}^{3} / \mathrm{s}\right)^{0.94}\right)$

Muskingum Equation

8) Change in Storage in Muskingum Method of Routing
fx $\Delta \mathrm{Sv}=\mathrm{K} \cdot\left(\mathrm{x} \cdot\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right)+(1-\mathrm{x}) \cdot\left(\mathrm{Q}_{2}-\mathrm{Q}_{1}\right)\right) \quad$ Open Calculator
ex $20.8=4 \cdot\left(1.8 \cdot\left(65 \mathrm{~m}^{3} / \mathrm{s}-55 \mathrm{~m}^{3} / \mathrm{s}\right)+(1-1.8) \cdot\left(64 \mathrm{~m}^{3} / \mathrm{s}-48 \mathrm{~m}^{3} / \mathrm{s}\right)\right)$
9) Muskingum Equation
$f \mathrm{fx} \Delta \mathrm{Sv}=\mathrm{K} \cdot(\mathrm{x} \cdot \mathrm{I}+(1-\mathrm{x}) \cdot \mathrm{Q})$
ex $121.6=4 \cdot\left(1.8 \cdot 28 \mathrm{~m}^{3} / \mathrm{s}+(1-1.8) \cdot 25 \mathrm{~m}^{3} / \mathrm{s}\right)$
10) Muskingum Routing Equation
$\mathrm{fx} \mathrm{Q}_{2}=\mathrm{C}_{\mathrm{o}} \cdot \mathrm{I}_{2}+\mathrm{C}_{1} \cdot \mathrm{I}_{1}+\mathrm{C}_{2} \cdot \mathrm{Q}_{1}$
Open Calculator
ex $51.819 \mathrm{~m}^{3} / \mathrm{s}=0.048 \cdot 65 \mathrm{~m}^{3} / \mathrm{s}+0.429 \cdot 55 \mathrm{~m}^{3} / \mathrm{s}+0.523 \cdot 48 \mathrm{~m}^{3} / \mathrm{s}$
Hydrologic Storage Routing
11) Coefficient of Discharge when Outflow is Considered
$f \times C_{d}=\left(\frac{\mathrm{Qh}}{\left(\frac{2}{3}\right) \cdot \sqrt{2 \cdot g} \cdot L_{e} \cdot\left(\frac{\mathrm{H}^{3}}{2}\right)}\right)$
$0.659561=\left(\frac{131.4 \mathrm{~m}^{3} / \mathrm{s}}{\left(\frac{2}{3}\right) \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 5.0 \mathrm{~m} \cdot\left(\frac{(3 \mathrm{~m})^{3}}{2}\right)}\right)$
12) Effective Length of Spillway Crest when Outflow is Considered
$f \mathbf{x} L_{\mathrm{e}}=\frac{\mathrm{Qh}}{\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \frac{\mathrm{H}^{3}}{2}}$
ex $4.996672 \mathrm{~m}=\frac{131.4 \mathrm{~m}^{3} / \mathrm{s}}{\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot \frac{(3 \mathrm{~m})^{3}}{2}}$
13) Head over Spillway when Outflow is Considered
$f \times H=\left(\frac{\mathrm{Qh}}{\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot\left(\frac{\mathrm{~L}_{\mathrm{e}}}{2}\right)}\right)^{\frac{1}{3}}$

Open Calculator 〔

$\operatorname{ex} 2.999334 \mathrm{~m}=\left(\frac{131.4 \mathrm{~m}^{3} / \mathrm{s}}{\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot\left(\frac{5.0 \mathrm{~m}}{2}\right)}\right)^{\frac{1}{3}}$
14) Outflow in Spillway
$f \mathrm{x} Q \mathrm{Qh}=\left(\frac{2}{3}\right) \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{~g}} \cdot \mathrm{~L}_{\mathrm{e}} \cdot \frac{\mathrm{H}^{3}}{2}$
Open Calculator
ex $131.4875 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}} \cdot 5.0 \mathrm{~m} \cdot \frac{(3 \mathrm{~m})^{3}}{2}$

Hydrologic Routing Formulas...

Goodrich Method

15) Inflow at Beginning of Time Interval
fx

$$
\mathrm{I}_{1}=\left(\left(2 \cdot \frac{\mathrm{~S}_{2}}{\Delta \mathrm{t}}\right)+\mathrm{Q}_{2}\right)-\left(\left(2 \cdot \frac{\mathrm{~S}_{1}}{\Delta \mathrm{t}}\right)-\mathrm{Q}_{1}\right)-\mathrm{I}_{2}
$$

ex $55 \mathrm{~m}^{3} / \mathrm{s}=\left(\left(2 \cdot \frac{35}{5 \mathrm{~s}}\right)+64 \mathrm{~m}^{3} / \mathrm{s}\right)-\left(\left(2 \cdot \frac{15}{5 \mathrm{~s}}\right)-48 \mathrm{~m}^{3} / \mathrm{s}\right)-65 \mathrm{~m}^{3} / \mathrm{s}$
16) Inflow at End of Time Interval
$f x$

$$
\mathrm{I}_{2}=\left(\left(2 \cdot \frac{\mathrm{~S}_{2}}{\Delta \mathrm{t}}\right)+\mathrm{Q}_{2}\right)-\left(\left(2 \cdot \frac{\mathrm{~S}_{1}}{\Delta \mathrm{t}}\right)-\mathrm{Q}_{1}\right)-\mathrm{I}_{1}
$$

ex $65 \mathrm{~m}^{3} / \mathrm{s}=\left(\left(2 \cdot \frac{35}{5 \mathrm{~s}}\right)+64 \mathrm{~m}^{3} / \mathrm{s}\right)-\left(\left(2 \cdot \frac{15}{5 \mathrm{~s}}\right)-48 \mathrm{~m}^{3} / \mathrm{s}\right)-55 \mathrm{~m}^{3} / \mathrm{s}$
17) Outflow at Beginning of Time Interval
$\mathrm{Q}_{1}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)+\left(2 \cdot \frac{\mathrm{~S}_{1}}{\Delta \mathrm{t}}\right)-\left(\left(2 \cdot \frac{\mathrm{~S}_{2}}{\Delta \mathrm{t}}\right)+\mathrm{Q}_{2}\right)$
ex $48 \mathrm{~m}^{3} / \mathrm{s}=\left(55 \mathrm{~m}^{3} / \mathrm{s}+65 \mathrm{~m}^{3} / \mathrm{s}\right)+\left(2 \cdot \frac{15}{5 \mathrm{~s}}\right)-\left(\left(2 \cdot \frac{35}{5 \mathrm{~s}}\right)+64 \mathrm{~m}^{3} / \mathrm{s}\right)$
18) Outflow at End of Time Interval
$f x$
Open Calculator

$$
\mathrm{Q}_{2}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)+\left(\left(2 \cdot \frac{\mathrm{~S}_{1}}{\Delta \mathrm{t}}\right)-\mathrm{Q}_{1}\right)-\left(2 \cdot \frac{\mathrm{~S}_{2}}{\Delta \mathrm{t}}\right)
$$

ex $64 \mathrm{~m}^{3} / \mathrm{s}=\left(55 \mathrm{~m}^{3} / \mathrm{s}+65 \mathrm{~m}^{3} / \mathrm{s}\right)+\left(\left(2 \cdot \frac{15}{5 \mathrm{~s}}\right)-48 \mathrm{~m}^{3} / \mathrm{s}\right)-\left(2 \cdot \frac{35}{5 \mathrm{~s}}\right)$

Modified Pul's Method

19) Storage at Beginning of Time Interval in Modified Pul's Method

$f x$

$\mathrm{S}_{1}=\left(\mathrm{S}_{2}+\left(\mathrm{Q}_{2} \cdot \frac{\Delta \mathrm{t}}{2}\right)\right)-\left(\frac{\mathrm{I}_{1}+\mathrm{I}_{2}}{2}\right) \cdot \Delta \mathrm{t}+\left(\mathrm{Q}_{1} \cdot \frac{\Delta \mathrm{t}}{2}\right)$
ex
$15=\left(35+\left(64 \mathrm{~m}^{3} / \mathrm{s} \cdot \frac{5 \mathrm{~s}}{2}\right)\right)-\left(\frac{55 \mathrm{~m}^{3} / \mathrm{s}+65 \mathrm{~m}^{3} / \mathrm{s}}{2}\right) \cdot 5 \mathrm{~s}+\left(48 \mathrm{~m}^{3} / \mathrm{s} \cdot \frac{5 \mathrm{~s}}{2}\right)$
20) Storage at End of Time Interval in Modified Pul's Method
fx

$$
\mathrm{S}_{2}=\left(\frac{\mathrm{I}_{1}+\mathrm{I}_{2}}{2}\right) \cdot \Delta \mathrm{t}+\left(\mathrm{S}_{1}-\left(\mathrm{Q}_{1} \cdot \frac{\Delta \mathrm{t}}{2}\right)\right)-\left(\mathrm{Q}_{2} \cdot \frac{\Delta \mathrm{t}}{2}\right)
$$

ex

$$
35=\left(\frac{55 \mathrm{~m}^{3} / \mathrm{s}+65 \mathrm{~m}^{3} / \mathrm{s}}{2}\right) \cdot 5 \mathrm{~s}+\left(15-\left(48 \mathrm{~m}^{3} / \mathrm{s} \cdot \frac{5 \mathrm{~s}}{2}\right)\right)-\left(64 \mathrm{~m}^{3} / \mathrm{s} \cdot \frac{5 \mathrm{~s}}{2}\right)
$$

Standard Fourth-Order Range Kutta Method

21) Water Surface Elevation at i'th step in Standard Fourth-Order Runge-Kutta Method

$$
\mathrm{H}_{\mathrm{i}}=\mathrm{H}_{\mathrm{i}+1}-\left(\left(\frac{1}{6}\right) \cdot\left(\mathrm{K}_{1}+2 \cdot \mathrm{~K}_{2}+2 \cdot \mathrm{~K}_{3}+\mathrm{K}_{4}\right) \cdot \Delta \mathrm{t}\right)
$$

ex $10=18-\left(\left(\frac{1}{6}\right) \cdot(1.61+2 \cdot 1.98+2 \cdot 1.28+1.47) \cdot 5 \mathrm{~s}\right)$
22) Water Surface Elevation in Standard Fourth-Order Runge-Kutta Method

$$
\mathrm{H}_{\mathrm{i}+1}=\mathrm{H}_{\mathrm{i}}+\left(\frac{1}{6}\right) \cdot\left(\mathrm{K}_{1}+2 \cdot \mathrm{~K}_{2}+2 \cdot \mathrm{~K}_{3}+\mathrm{K}_{4}\right) \cdot \Delta \mathrm{t}
$$

$\mathbf{e x} 18=10.0+\left(\frac{1}{6}\right) \cdot(1.61+2 \cdot 1.98+2 \cdot 1.28+1.47) \cdot 5 \mathrm{~s}$

Variables Used

- \mathbf{C}_{1} Coefficient C1 in Muskingum Method of Routing
- \mathbf{C}_{2} Coefficient C2 in Muskingum Method of Routing
- $\mathbf{C}_{\mathbf{d}}$ Coefficient of Discharge
- \mathbf{C}_{0} Coefficient Co in Muskingum Method of Routing
- \mathbf{g} Acceleration due to Gravity (Meter per Square Second)
- H Head over Weir (Meter)
- $\mathbf{H}_{\mathbf{i}}$ Water Surface Elevation at i'th Step
- $\mathrm{H}_{\mathrm{i}+1}$ Water Surface Elevation at (i+1)th Step
- I Inflow Rate (Cubic Meter per Second)
- I_{1} Inflow at the Beginning of Time Interval (Cubic Meter per Second)
- \mathbf{I}_{2} Inflow at the End of Time Interval (Cubic Meter per Second)
- K Constant K
- \mathbf{K}_{1} Coefficient K1 by Repeated Appropriate Evaluation
- \mathbf{K}_{2} Coefficient K2 by Repeated Appropriate Evaluation
- K_{3} Coefficient K3 by Repeated Appropriate Evaluation
- $\mathbf{K}_{\mathbf{4}}$ Coefficient K4 by Repeated Appropriate Evaluation
- \mathbf{L}_{e} Effective Length of the Spillway Crest (Meter)
- m A Constant Exponent
- Q Outflow Rate (Cubic Meter per Second)
- \mathbf{Q}_{1} Outflow at the Beginning of Time Interval (Cubic Meter per Second)
- $\mathbf{Q}_{\mathbf{2}}$ Outflow at the End of Time Interval (Cubic Meter per Second)
- Qh Reservoir Discharge (Cubic Meter per Second)
- S Total Storage in Channel Reach (Cubic Meter)
- \mathbf{S}_{1} Storage at the Beginning of Time Interval
- $\mathbf{S}_{\mathbf{2}}$ Storage at the End of Time Interval
- \mathbf{x} Coefficient x in the Equation
- $\Delta \mathbf{S v}$ Change in Storage Volumes
- $\Delta \mathbf{t}$ Time Interval (Second)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Second (s)

Time Unit Conversion $\boxed{\square}$

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Acceleration in Meter per Square Second (m/s ${ }^{2}$)

Acceleration Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Basic Equations of Flood Routing Formulas

Hydrograph) Formulas $\boxed{\Omega}$

- Hydrologic Routing Formulas
- Clark's Method and Nash Model for IUH (Instantaneous Unit

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

