
calculatoratoz.com

unitsconverters.com

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas...

List of 19 Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) ©

Clark's Method for IUH ©

1) Inflow at Beginning of Time Interval for Routing of Time-Area Histogram $\boxed{\square}$
$f \times I_{1}=\frac{Q_{2}-\left(C_{2} \cdot Q_{1}\right)}{2 \cdot C_{1}}$
Open Calculator
ex $45.33333 \mathrm{~m}^{3} / \mathrm{s}=\frac{64 \mathrm{~m}^{3} / \mathrm{s}-\left(0.523 \cdot 48 \mathrm{~m}^{3} / \mathrm{s}\right)}{2 \cdot 0.429}$
2) Inflow Rate between Inter-Isochrone Area
$f \mathrm{fx}=2.78 \cdot \frac{\mathrm{~A}_{\mathrm{r}}}{\Delta \mathrm{t}}$
Open Calculator
ex $27.8 \mathrm{~m}^{3} / \mathrm{s}=2.78 \cdot \frac{50 \mathrm{~m}^{2}}{5 \mathrm{~s}}$

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas...
3) Inter-Isochrone Area given Inflow
$\mathrm{fx} \mathrm{A}_{\mathrm{r}}=\mathrm{I} \cdot \frac{\Delta \mathrm{t}}{2.78}$

Open Calculator

ex $50.35971 \mathrm{~m}^{2}=28 \mathrm{~m}^{3} / \mathrm{s} \cdot \frac{5 \mathrm{~s}}{2.78}$
4) Outflow at Beginning of Time Interval for Routing of Time-Area Histogram
$f \mathrm{x} \mathrm{Q}_{1}=\frac{\mathrm{Q}_{2}-\left(2 \cdot \mathrm{C}_{1} \cdot \mathrm{I}_{1}\right)}{\mathrm{C}_{2}}$
ex $32.14149 \mathrm{~m}^{3} / \mathrm{s}=\frac{64 \mathrm{~m}^{3} / \mathrm{s}-\left(2 \cdot 0.429 \cdot 55 \mathrm{~m}^{3} / \mathrm{s}\right)}{0.523}$
5) Outflow at End of Time Interval for Routing of Time-Area Histogram
$\mathrm{fx} \mathrm{Q}_{2}=2 \cdot \mathrm{C}_{1} \cdot \mathrm{I}_{1}+\mathrm{C}_{2} \cdot \mathrm{Q}_{1}$
ex $72.294 \mathrm{~m}^{3} / \mathrm{s}=2 \cdot 0.429 \cdot 55 \mathrm{~m}^{3} / \mathrm{s}+0.523 \cdot 48 \mathrm{~m}^{3} / \mathrm{s}$
6) Time Interval at Inter-Isochrone Area given Inflow
$f \times \Delta t=2.78 \cdot \frac{\mathrm{~A}_{\mathrm{r}}}{\mathrm{I}}$
Open Calculator
ex $4.964286 \mathrm{~s}=2.78 \cdot \frac{50 \mathrm{~m}^{2}}{28 \mathrm{~m}^{3} / \mathrm{s}}$

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas...

Nash's Conceptual Model ©

7) Equation for Inflow from Continuity Equation
$f x I=K \cdot R_{d q / d t}+Q$
Open Calculator \square
ex $28 \mathrm{~m}^{3} / \mathrm{s}=4 \cdot 0.75+25 \mathrm{~m}^{3} / \mathrm{s}$
8) Ordinates of Instantaneous Unit Hydrograph representing IUH of Catchment
$f x$
Open Calculator
$\mathrm{U}_{\mathrm{t}}=\left(\frac{1}{((\mathrm{n}-1)!) \cdot\left(\mathrm{K}^{\mathrm{n}}\right)}\right) \cdot\left(\Delta \mathrm{t}^{\mathrm{n}-1}\right) \cdot \exp \left(-\frac{\Delta \mathrm{t}}{\mathrm{n}}\right)$
ex $0.03689 \mathrm{~cm} / \mathrm{h}=\left(\frac{1}{((3-1)!) \cdot\left((4)^{3}\right)}\right) \cdot\left((5 \mathrm{~s})^{3-1}\right) \cdot \exp \left(-\frac{5 \mathrm{~s}}{3}\right)$

9) Outflow in First Reservoir $\boxed{\text { U }}$

$f \mathrm{fx} \mathrm{Q}_{\mathrm{n}}=\left(\frac{1}{\mathrm{~K}}\right) \cdot \exp \left(-\frac{\Delta \mathrm{t}}{\mathrm{K}}\right)$
Open Calculator 〔
ex $0.071626 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{1}{4}\right) \cdot \exp \left(-\frac{5 \mathrm{~s}}{4}\right)$

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph)
Formulas...
10) Outflow in nth Reservoir
$f x$
$\mathrm{Q}_{\mathrm{n}}=\left(\frac{1}{((\mathrm{n}-1)!) \cdot\left(\mathrm{K}^{\mathrm{n}}\right)}\right) \cdot\left(\Delta \mathrm{t}^{\mathrm{n}-1}\right) \cdot \exp \left(-\frac{\Delta \mathrm{t}}{\mathrm{n}}\right)$
$\operatorname{ex} 0.03689 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{1}{((3-1)!) \cdot\left((4)^{3}\right)}\right) \cdot\left((5 \mathrm{~s})^{3-1}\right) \cdot \exp \left(-\frac{5 \mathrm{~s}}{3}\right)$
11) Outflow in Second Reservoir
$f x \mathrm{Q}_{\mathrm{n}}=\left(\frac{1}{\mathrm{~K}^{2}}\right) \cdot \Delta \mathrm{t} \cdot \exp \left(-\frac{\Delta \mathrm{t}}{\mathrm{K}}\right)$
Open Calculator 〔
ex $0.089533 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{1}{(4)^{2}}\right) \cdot 5 \mathrm{~s} \cdot \exp \left(-\frac{5 \mathrm{~s}}{4}\right)$

12) Outflow in Third Reservoir

$f \mathrm{x} \mathrm{Q}_{\mathrm{n}}=\left(\frac{1}{2}\right) \cdot\left(\frac{1}{\mathrm{~K}^{3}}\right) \cdot\left(\Delta \mathrm{t}^{2}\right) \cdot \exp \left(-\frac{\Delta \mathrm{t}}{\mathrm{K}}\right)$
ex $0.055958 \mathrm{~m}^{3} / \mathrm{s}=\left(\frac{1}{2}\right) \cdot\left(\frac{1}{(4)^{3}}\right) \cdot\left((5 \mathrm{~s})^{2}\right) \cdot \exp \left(-\frac{5 \mathrm{~s}}{4}\right)$

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas...
Determination of \mathbf{n} and \mathbf{S} of Nash's Model
13) First Moment of DRH about Time Origin divided by Total Direct Runoff U
$f \mathrm{f} \mathrm{M}_{\mathrm{Q} 1}=(\mathrm{n} \cdot \mathrm{K})+\mathrm{M}_{\mathrm{I} 1}$
Open Calculator
ex $22=(3 \cdot 4)+10$
14) First Moment of ERH about Time Origin divided by Total Effective Rainfall
$f \mathrm{f} \mathrm{M}_{\mathrm{I} 1}=\mathrm{M}_{\mathrm{Q} 1}-(\mathrm{n} \cdot \mathrm{K})$
Open Calculator
ex $10=22-(3 \cdot 4)$
15) First Moment of ERH given Second Moment of DRH
$f \mathbf{x} \mathrm{M}_{\mathrm{I} 1}=\frac{\mathrm{M}_{\mathrm{Q} 2}-\mathrm{M}_{\mathrm{I} 2}-\left(\mathrm{n} \cdot(\mathrm{n}+1) \cdot \mathrm{K}^{2}\right)}{2 \cdot \mathrm{n} \cdot \mathrm{K}}$
Open Calculator
$\operatorname{ex} 10=\frac{448-16-\left(3 \cdot(3+1) \cdot(4)^{2}\right)}{2 \cdot 3 \cdot 4}$
16) First Moment of Instantaneous Unit Hydrograph or IUH
$\mathrm{fx} \mathrm{M}_{1}=\mathrm{n} \cdot \mathrm{K}$
ex $12=3 \cdot 4$

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas...
17) Second Moment of DRH about Time Origin divided by Total Direct Runoff

$$
\mathrm{M}_{\mathrm{Q} 2}=\left(\mathrm{n} \cdot(\mathrm{n}+1) \cdot \mathrm{K}^{2}\right)+\left(2 \cdot \mathrm{n} \cdot \mathrm{~K} \cdot \mathrm{M}_{\mathrm{I} 1}\right)+\mathrm{M}_{\mathrm{I} 2}
$$

ex $448=\left(3 \cdot(3+1) \cdot(4)^{2}\right)+(2 \cdot 3 \cdot 4 \cdot 10)+16$
18) Second Moment of ERH about Time Origin divided by Total Excess Rainfall
$\mathrm{M}_{\mathrm{I} 2}=\mathrm{M}_{\mathrm{Q} 2}-\left(\mathrm{n} \cdot(\mathrm{n}+1) \cdot \mathrm{K}^{2}\right)-\left(2 \cdot \mathrm{n} \cdot \mathrm{K} \cdot \mathrm{M}_{\mathrm{I} 1}\right)$
ex $16=448-\left(3 \cdot(3+1) \cdot(4)^{2}\right)-(2 \cdot 3 \cdot 4 \cdot 10)$
19) Second Moment of Instantaneous Unit Hydrograph or IUH
$f \mathrm{x} \quad \mathrm{M}_{2}=\mathrm{n} \cdot(\mathrm{n}+1) \cdot \mathrm{K}^{2}$
ex $192=3 \cdot(3+1) \cdot(4)^{2}$

Variables Used

- Ar Inter-Isochrone Area (Square Meter)
- \mathbf{C}_{1} Coefficient C1 in Muskingum Method of Routing
- \mathbf{C}_{2} Coefficient C2 in Muskingum Method of Routing
- I Inflow Rate (Cubic Meter per Second)
- I_{1} Inflow at the Beginning of Time Interval (Cubic Meter per Second)
- K Constant K
- \mathbf{M}_{1} First Moment of the IUH
- $\mathbf{M}_{\mathbf{2}}$ Second Moment of the IUH
- \mathbf{M}_{11} First Moment of the ERH
- \mathbf{M}_{12} Second Moment of the ERH
- $\mathbf{M}_{\mathbf{Q 1}}$ First Moment of the DRH
- $\mathbf{M}_{\mathbf{Q 2}}$ Second Moment of the DRH
- n Constant n
- Q Outflow Rate (Cubic Meter per Second)
- \mathbf{Q}_{1} Outflow at the Beginning of Time Interval (Cubic Meter per Second)
- \mathbf{Q}_{2} Outflow at the End of Time Interval (Cubic Meter per Second)
- $\mathbf{Q}_{\mathbf{n}}$ Outflow in the Reservoir (Cubic Meter per Second)
- $\mathbf{R}_{\mathrm{dq} / \mathrm{dt}}$ Rate of Change of Discharge
- $\mathbf{U}_{\mathbf{t}}$ Ordinates of Unit Hydrograph (Centimeter per Hour)
- Δt Time Interval (Second)

Constants, Functions, Measurements used

- Function: exp, $\exp ($ Number $)$ n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Centimeter per Hour (cm/h)

Speed Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion

Clark's Method and Nash Model for IUH (Instantaneous Unit Hydrograph) Formulas...

Check other formula lists

- Basic Equations of Flood Routing Hydrograph) Formulas Formulas
- Hydrologic Routing Formulas
- Clark's Method and Nash Model for IUH (Instantaneous Unit

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

