

Bay Superelevation, Effect of Freshwater Inflow, Multiple Inlets and Wave-Current Interaction Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator

Open Calculator

Open Calculator G

List of 24 Bay Superelevation, Effect of Freshwater Inflow, Multiple Inlets and Wave-Current Interaction Formulas

Bay Superelevation, Effect of Freshwater Inflow, Multiple Inlets and Wave-Current Interaction 🗗

Bay Superelevation 🗗

1) Depth given Water Surface Slope

$$h = rac{\Delta \cdot au}{eta \cdot
ho_{water} \cdot [g]}$$

 $= 1.49 \cdot 0.6 \text{N/m}^2$ $= \frac{1.49 \cdot 0.6 \text{N/m}^2}{0.00000765 \cdot 1000 \text{kg/m}^3 \cdot [\text{g}]}$

 $\Delta_{BS} = a_o \cdot \left(rac{\sin\left(2 \cdot \pi \cdot rac{t}{T}
ight)}{1 - \cos\left(2 \cdot \pi \cdot rac{t}{T}
ight)}
ight)$

 $\boxed{\textbf{4.515067m} = 4.0\text{m} \cdot \left(\frac{\sin\left(2 \cdot \pi \cdot \frac{1.2\text{h}}{130\text{s}}\right)}{1 - \cos\left(2 \cdot \pi \cdot \frac{1.2\text{h}}{130\text{s}}\right)}\right)}$

3) Superelevation due to Varying Entrance Channel Cross-Section 🗲

5) Superelevation due to varying Entrance Channel Cross-Section

$$\left|S = a_o \cdot \left(1 - \left(\frac{\left(\frac{a_B}{a_o}\right)^2}{4 \cdot \left(\frac{D_t}{a_o}\right)}\right) - \left(\frac{a_o}{m \cdot W}\right) \cdot \left(0.5 - \left(\frac{a_B}{a_o}\right) \cdot \cos(k) - \left(\left(\frac{3}{2}\right) \cdot \left(\frac{a_B}{a_o}\right)^2\right) + 4\right)\right|$$

$$2.000651 \text{m} = 4.0 \text{m} \cdot \left(1 - \left(\frac{\left(\frac{3.7}{4.0 \text{m}}\right)^2}{4 \cdot \left(\frac{5.01 \text{m}}{4.0 \text{m}}\right)}\right) - \left(\frac{4.0 \text{m}}{1.5 \cdot 52 \text{m}}\right) \cdot \left(0.5 - \left(\frac{3.7}{4.0 \text{m}}\right) \cdot \cos(22) - \left(\left(\frac{3}{2}\right) \cdot \left(\frac{3.7}{4.0 \text{m}}\right)^2\right) + \left(\frac{3.7}{4.0 \text{m}}\right)^2\right) \cdot \left(\frac{3.7}{4.0 \text{m}}\right) \cdot \left(\frac{3.7}{4.0 \text{m}}\right) \cdot \left(\frac{3.7}{4.0 \text{m}}\right)^2 \cdot \cos(22) - \left(\frac{3.7}{4.0 \text{m}}\right)^2\right) \cdot \left(\frac{3.7}{4.0 \text{m}}\right) \cdot \left(\frac{3.7}{4.0 \text{m}}\right) \cdot \left(\frac{3.7}{4.0 \text{m}}\right)^2 \cdot \left(\frac$$

4) Tidal Amplitude in Ocean

$$\mathbf{a}_{\mathrm{o}} = rac{\Delta_{\mathrm{BS}}}{rac{\sin\left(2\cdot\pi\cdotrac{t}{\mathrm{T}}
ight)}{1-\cos\left(2\cdot\pi\cdotrac{t}{\mathrm{T}}
ight)}}$$

Open Calculator

$$\underbrace{\frac{3.995511 m}{\frac{1.5 (2 \cdot \pi \cdot \frac{1.2 h}{130 s})}{1 - \cos(2 \cdot \pi \cdot \frac{1.2 h}{130 s})}}}_{}$$

Effect of Freshwater Inflow

5) King's Dimensionless Variable

$$extbf{Q} \mathbf{r}' = \mathbf{Q} \mathbf{r} \cdot rac{\mathbf{T}}{2 \cdot \pi \cdot \mathbf{a}_{
m o} \cdot \mathbf{A}_{
m b}}$$

Open Calculator

$$\boxed{ \text{ex} \ 0.574688 = 10 \text{m}^3 / \text{min} \cdot \frac{130 \text{s}}{2 \cdot \pi \cdot 4.0 \text{m} \cdot 1.5001 \text{m}^2} }$$

6) Ocean Tide Amplitude using King's Dimensionless Variable

$$egin{align} alles & \left[a_o = rac{Qr \cdot T}{Qr' \cdot 2 \cdot \pi \cdot A_b}
ight] \end{aligned}$$

Open Calculator 🗗

ex
$$4.032897 \mathrm{m} = rac{10 \mathrm{m}^3 / \mathrm{min} \cdot 130 \mathrm{s}}{0.57 \cdot 2 \cdot \pi \cdot 1.5001 \mathrm{m}^2}$$

7) River or Freshwater Inflow to Bay using King's Dimensionless Variable

$$ag{Qr} = rac{Qr' \cdot 2 \cdot \pi \cdot a_o \cdot A_b}{T}$$

Open Calculator 🗗

$$\boxed{ 9.918428 \text{m}^3/\text{min} = \frac{0.57 \cdot 2 \cdot \pi \cdot 4.0 \text{m} \cdot 1.5001 \text{m}^2}{130 \text{s}} }$$

8) Surface Area of Bay or Basin using King's Dimensionless Variable

$$\mathbf{A}_{\mathrm{b}} = rac{\mathrm{Qr} \cdot \mathrm{T}}{\mathrm{Qr}^{\prime} \cdot 2 \cdot \pi \cdot \mathrm{a_o}}$$

$$oxed{ex} 1.512437 \mathrm{m}^2 = rac{10 \mathrm{m}^3 / \mathrm{min} \cdot 130 \mathrm{s}}{0.57 \cdot 2 \cdot \pi \cdot 4.0 \mathrm{m}}$$

9) Tidal Period using King's Dimensionless Variable

$$T = rac{Qr' \cdot 2 \cdot \pi \cdot a_o \cdot A_b}{Qr}$$

Open Calculator

ex
$$128.9396s = \frac{0.57 \cdot 2 \cdot \pi \cdot 4.0m \cdot 1.5001m^2}{10m^3/min}$$

Multiple Inlets &

10) Maximum Velocity in Inlet Throat given Total Maximum Discharge

$$V_{max} = rac{Q_{max} \cdot T}{2 \cdot \pi \cdot a_o \cdot A_b}$$

Open Calculator

11) Ocean Tide Amplitude given Total Maximum Discharge for Total of all Inlets

$$\mathbf{a}_{\mathrm{o}} = rac{\mathrm{Q}_{\mathrm{max}} \cdot \mathrm{T}}{2 \cdot \pi \cdot \mathrm{A}_{\mathrm{b}} \cdot \mathrm{V}_{\mathrm{max}}}$$

Open Calculator 🗗

$$ext{ex} \ 3.999828 ext{m} = rac{10.15 ext{m}^3/ ext{s} \cdot 130 ext{s}}{2 \cdot \pi \cdot 1.5001 ext{m}^2 \cdot 35 ext{m/s}}$$

12) Surface Area of Bay or Basin given Total Maximum Discharge

$$\mathbf{K} egin{equation} \mathbf{A}_{b} = rac{\mathbf{Q}_{\mathrm{max}} \cdot \mathbf{T}}{2 \cdot \pi \cdot \mathbf{a}_{\mathrm{o}} \cdot \mathbf{V}_{\mathrm{max}}} \end{aligned}$$

Open Calculator

$$\label{eq:exp} \boxed{1.500035 m^2 = \frac{10.15 m^3/s \cdot 130 s}{2 \cdot \pi \cdot 4.0 m \cdot 35 m/s}}$$

13) Tidal Period given Total Maximum Discharge for Total of all Inlets

$$T = rac{2 \cdot \pi \cdot a_o \cdot V_{max} \cdot A_b}{Q_{max}}$$

14) Total Maximum Discharge for Total of all Inlets

 $\mathbf{K} \mathbf{Q}_{ ext{max}} = rac{2 \cdot \pi \cdot \mathbf{a}_{ ext{o}} \cdot \mathbf{A}_{ ext{b}} \cdot \mathbf{V}_{ ext{max}}}{\mathbf{T}}$

Open Calculator

ex
$$10.15044 \mathrm{m}^{_3}/\mathrm{s} = rac{2 \cdot \pi \cdot 4.0 \mathrm{m} \cdot 1.5001 \mathrm{m}^{_2} \cdot 35 \mathrm{m/s}}{130 \mathrm{s}}$$

Wave-Current Interaction &

15) Angle Wave Orthogonal makes with Current in Non-propagated Wave Values on Forbidden Region

$$heta = a \cos igg(ext{F} \cdot rac{\left([ext{g}] \cdot ext{d}_{ ext{T}}
ight)^{0.5}}{ ext{V}} igg)$$

Open Calculator

$$\boxed{\textbf{ex}} \ 3.767954^\circ = a \cos \left(0.57 \cdot \frac{\left([\mathrm{g}] \cdot 5\mathrm{m} \right)^{0.5}}{4\mathrm{m/s}} \right)$$

16) Channel Depth in Non-propagated Wave Values

$$d_T = [g] \cdot \left(\frac{\Omega \cdot T_p}{2 \cdot \pi}\right)^{\frac{1}{0.5}}$$

$$4.952265m = [g] \cdot \left(\frac{0.047 \cdot 95s}{2 \cdot \pi}\right)^{\frac{1}{0.5}}$$

Open Calculator 🗗

$$2 \cdot \pi$$

17) Channel Depth in Non-propagated Wave values in Forbidden Region 🗹

$$\mathbf{fx} = rac{\left(\left(V \cdot rac{\cos(heta)}{F}
ight)
ight)^2}{[g]}$$

Open Calculator 🗗

$$= \frac{\left(\left(4 \text{m/s} \cdot \frac{\cos(3.76^{\circ})}{0.57}\right)\right)^{2}}{[\text{g}]}$$

18) Channel Velocity in Non-propagated Wave Values in Forbidden Region 🗗

$$V = rac{F \cdot ([g] \cdot d_T)^{0.5}}{\cos(heta)}$$

19) Effect of Current on Wave Height

 $\kappa = R_{
m H} \cdot H_{
m A}$

Open Calculator 🖸

$$80 \mathrm{m} = 0.8 \cdot 100 \mathrm{m}$$

20) Inlet Current Wave Height Factor

 $m R_H = rac{H}{H_A}$

Open Calculator 🖸

$$0.8 = \frac{80 \text{ m}}{100 \text{ m}}$$

21) Non-propagated Wave Values in Forbidden Region Boundary Line

 $\mathrm{F} = rac{V \cdot \cos(heta)}{\left([\mathrm{g}] \cdot \mathrm{d_T}
ight)^{0.5}}$

Open Calculator

$$extbf{ex} 0.570005 = rac{4 ext{m/s} \cdot ext{cos}(3.76^\circ)}{\left([ext{g}] \cdot 5 ext{m}
ight)^{0.5}}$$

22) Non-propagated Wave Values in Forbidden Region of Boundary Line

 $\Omega = \left(\frac{2 \cdot \pi}{T_p}\right) \cdot \left(\frac{d_T}{[g]}\right)^{0.5}$ $\boxed{ ex } 0.047226 = \left(\frac{2 \cdot \pi}{95s}\right) \cdot \left(\frac{5m}{[g]}\right)^{0.5}$

Open Calculator

(95s / (g) /

23) Wave Height Entering Inlet

 $\mathbf{K} \left[\mathbf{H}_{\mathrm{A}} = rac{\mathbf{H}}{\mathrm{R}_{\mathrm{H}}}
ight]$

 $100 \text{m} = \frac{80 \text{m}}{0.8}$

Open Calculator 🗗

24) Wave Period in Non-propagated Wave Values

$$ag{T_p} = rac{2 \cdot \pi \cdot \left(rac{d_T}{[g]}
ight)^{rac{1}{2}}}{\Omega}$$

ex
$$95.45676s = rac{2 \cdot \pi \cdot \left(rac{5m}{[g]}
ight)^{rac{1}{2}}}{0.047}$$

Variables Used

- aB Bay Tide Amplitude
- Ab Surface Area of Bay (Square Meter)
- ao Ocean Tide Amplitude (Meter)
- d_T Time Averaged Water Depth (Meter)
- D_t Channel Depth (Meter)
- F Non-propagated Wave Values of 'F'
- h Eckman Constant Depth (Meter)
- **H** Wave Height (Meter)
- H_▲ Wave Height Entering Inlet (Meter)
- k Phase Lag
- m Bank Slope
- Q_{max} Maximum Discharge of Total Inlets (Cubic Meter per Second)
- Qr River or Freshwater Inflow to a Bay (Cubic Meter per Minute)
- Qr' King's Dimensionless Variable for Freshwater
- R_H Inlet Current Wave Height Factor
- S Superelevation (Meter)
- **t** Duration of Inflow (Hour)
- T Tidal Period (Second)
- Tp Wave Period (Second)
- **V** Velocity in Channel (Meter per Second)
- V_{max} Maximum Velocity in the Inlet Throat (Meter per Second)
- W Channel Width corresponding to Mean Water Depth (Meter)
- β Water Surface Slope
- ▲ Coefficient of Eckman
- Δ_{BS} Bay Superelevation (Meter)
- **0** Angle b/w Horizontal Velocity and Horizontal Wave (*Degree*)
- ρ_{water} Water Density (Kilogram per Cubic Meter)
- T Shear Stress at the Water Surface (Newton per Square Meter)
- Ω Non-propagated Wave Values

Constants, Functions, Measurements used

Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant

• Constant: [g], 9.80665

Gravitational acceleration on Earth

• Function: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

• Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

• Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

• Measurement: Length in Meter (m)

Length Unit Conversion

• Measurement: Time in Hour (h), Second (s)

Time Unit Conversion

• Measurement: Area in Square Meter (m²)

Area Unit Conversion

• Measurement: Pressure in Newton per Square Meter (N/m²)

Pressure Unit Conversion

• Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

• Measurement: Angle in Degree (°)

Angle Unit Conversion

• Measurement: Volumetric Flow Rate in Cubic Meter per Minute (m³/min), Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion

• Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion 🛂

Check other formula lists

- · Bay Superelevation, Effect of Freshwater Inflow, **Multiple Inlets and Wave-Current Interaction**
- Formulas 🚰
- Inlet Currents and Tidal Elevations Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

4/9/2024 | 9:49:25 AM UTC

Please leave your feedback here...

