Bay Superelevation, Effect of Freshwater Inflow, Multiple Inlets and Wave-Current Interaction Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 24 Bay Superelevation, Effect of Freshwater Inflow, Multiple Inlets and Wave-Current Interaction Formulas

Bay Superelevation, Effect of Freshwater Inflow, Multiple Inlets and Wave-Current Interaction ©

Bay Superelevation

1) Depth given Water Surface Slope
$\mathrm{fx} h=\frac{\Delta \cdot \tau}{\beta \cdot \rho_{\text {water }} \cdot[g]}$
ex $11.91668 \mathrm{~m}=\frac{1.49 \cdot 0.6 \mathrm{~N} / \mathrm{m}^{2}}{0.00000765 \cdot 1000 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}]}$
2) Superelevation
$\mathrm{fx} \Delta_{\mathrm{BS}}=\mathrm{a}_{\mathrm{o}} \cdot\left(\frac{\sin \left(2 \cdot \pi \cdot \frac{\mathrm{t}}{\mathrm{T}}\right)}{1-\cos \left(2 \cdot \pi \cdot \frac{\mathrm{t}}{\mathrm{T}}\right)}\right)$
ex $4.515067 \mathrm{~m}=4.0 \mathrm{~m} \cdot\left(\frac{\sin \left(2 \cdot \pi \cdot \frac{1.2 \mathrm{~h}}{130 \mathrm{~s}}\right)}{1-\cos \left(2 \cdot \pi \cdot \frac{1.2 \mathrm{~h}}{130 \mathrm{~s}}\right)}\right)$
3) Superelevation due to Varying Entrance Channel Cross-Section
$S=a_{o} \cdot\left(1-\left(\frac{\left(\frac{a_{B}}{a_{o}}\right)^{2}}{4 \cdot\left(\frac{D_{t}}{a_{o}}\right)}\right)-\left(\frac{a_{o}}{m \cdot W}\right) \cdot\left(0.5-\left(\frac{a_{B}}{a_{o}}\right) \cdot \cos (k)-\left(\left(\frac{3}{2}\right) \cdot\left(\frac{a_{B}}{a_{o}}\right)^{2}\right)+4\right.\right.$
$2.000651 \mathrm{~m}=4.0 \mathrm{~m} \cdot\left(1-\left(\frac{\left(\frac{3.7}{4.0 \mathrm{~m}}\right)^{2}}{4 \cdot\left(\frac{5.01 \mathrm{~m}}{4.0 \mathrm{~m}}\right)}\right)-\left(\frac{4.0 \mathrm{~m}}{1.5 \cdot 52 \mathrm{~m}}\right) \cdot\left(0.5-\left(\frac{3.7}{4.0 \mathrm{~m}}\right) \cdot \cos (22)-\left(\left(\frac{3}{2}\right) \cdot\left(\frac{3.7}{4.0 \mathrm{~m}}\right)^{2}\right.\right.\right.$
4) Tidal Amplitude in Ocean
$f \mathrm{xa} \mathrm{a}_{\mathrm{o}}=\frac{\Delta_{\mathrm{BS}}}{\frac{\sin \left(2 \cdot \pi \cdot \frac{\mathrm{t}}{\mathrm{T}}\right)}{1-\cos \left(2 \cdot \pi \cdot \frac{\mathrm{t}}{\mathrm{T}}\right)}}$
ex $3.995511 \mathrm{~m}=\frac{4.51 \mathrm{~m}}{\frac{\sin \left(2 \cdot \pi \cdot \frac{1.2 \mathrm{l}}{135}\right)}{1-\cos \left(2 \cdot \pi \cdot \frac{1.27}{130 \mathrm{~s}}\right)}}$

Effect of Freshwater Inflow ©

5) King's Dimensionless Variable
$f x \mathrm{Qr}^{\prime}=\mathrm{Qr} \cdot \frac{\mathrm{T}}{2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}} \cdot \mathrm{A}_{\mathrm{b}}}$
ex $0.574688=10 \mathrm{~m}^{3} / \mathrm{min} \cdot \frac{130 \mathrm{~s}}{2 \cdot \pi \cdot 4.0 \mathrm{~m} \cdot 1.5001 \mathrm{~m}^{2}}$
6) Ocean Tide Amplitude using King's Dimensionless Variable
$\mathrm{fx} \mathrm{a}_{\mathrm{o}}=\frac{\mathrm{Qr} \cdot \mathrm{T}}{\mathrm{Qr}^{\prime} \cdot 2 \cdot \pi \cdot \mathrm{~A}_{\mathrm{b}}}$
ex $4.032897 \mathrm{~m}=\frac{10 \mathrm{~m}^{3} / \mathrm{min} \cdot 130 \mathrm{~s}}{0.57 \cdot 2 \cdot \pi \cdot 1.5001 \mathrm{~m}^{2}}$
7) River or Freshwater Inflow to Bay using King's Dimensionless Variable
$f \mathrm{Fx}=\frac{\mathrm{Qr}^{\prime} \cdot 2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}} \cdot \mathrm{A}_{\mathrm{b}}}{\mathrm{T}}$
ex $9.918428 \mathrm{~m}^{3} / \mathrm{min}=\frac{0.57 \cdot 2 \cdot \pi \cdot 4.0 \mathrm{~m} \cdot 1.5001 \mathrm{~m}^{2}}{130 \mathrm{~s}}$
8) Surface Area of Bay or Basin using King's Dimensionless Variable
$f \mathbf{f x} \mathrm{~A}_{\mathrm{b}}=\frac{\mathrm{Qr} \cdot \mathrm{T}}{\mathrm{Qr}^{\prime} \cdot 2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}}}$
ex $1.512437 \mathrm{~m}^{2}=\frac{10 \mathrm{~m}^{3} / \mathrm{min} \cdot 130 \mathrm{~s}}{0.57 \cdot 2 \cdot \pi \cdot 4.0 \mathrm{~m}}$
9) Tidal Period using King's Dimensionless Variable
$\mathrm{fx} \mathrm{T}=\frac{\mathrm{Qr}^{\prime} \cdot 2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}} \cdot \mathrm{A}_{\mathrm{b}}}{\mathrm{Qr}}$
ex $128.9396 \mathrm{~s}=\frac{0.57 \cdot 2 \cdot \pi \cdot 4.0 \mathrm{~m} \cdot 1.5001 \mathrm{~m}^{2}}{10 \mathrm{~m}^{3} / \mathrm{min}}$

Multiple Inlets

10) Maximum Velocity in Inlet Throat given Total Maximum Discharge
fx $\mathrm{V}_{\text {max }}=\frac{\mathrm{Q}_{\text {max }} \cdot T}{2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}} \cdot \mathrm{A}_{\mathrm{b}}}$
ex $34.99849 \mathrm{~m} / \mathrm{s}=\frac{10.15 \mathrm{~m}^{3} / \mathrm{s} \cdot 130 \mathrm{~s}}{2 \cdot \pi \cdot 4.0 \mathrm{~m} \cdot 1.5001 \mathrm{~m}^{2}}$
11) Ocean Tide Amplitude given Total Maximum Discharge for Total of all Inlets
$\mathrm{fx} \mathrm{a}_{\mathrm{o}}=\frac{\mathrm{Q}_{\max } \cdot \mathrm{T}}{2 \cdot \pi \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{V}_{\max }}$
ex $3.999828 \mathrm{~m}=\frac{10.15 \mathrm{~m}^{3} / \mathrm{s} \cdot 130 \mathrm{~s}}{2 \cdot \pi \cdot 1.5001 \mathrm{~m}^{2} \cdot 35 \mathrm{~m} / \mathrm{s}}$
12) Surface Area of Bay or Basin given Total Maximum Discharge
fx $\mathrm{A}_{\mathrm{b}}=\frac{\mathrm{Q}_{\text {max }} \cdot T}{2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}} \cdot \mathrm{V}_{\text {max }}}$
ex $1.500035 \mathrm{~m}^{2}=\frac{10.15 \mathrm{~m}^{3} / \mathrm{s} \cdot 130 \mathrm{~s}}{2 \cdot \pi \cdot 4.0 \mathrm{~m} \cdot 35 \mathrm{~m} / \mathrm{s}}$
13) Tidal Period given Total Maximum Discharge for Total of all Inlets
$f \times \mathrm{T}=\frac{2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}} \cdot \mathrm{V}_{\max } \cdot \mathrm{A}_{\mathrm{b}}}{\mathrm{Q}_{\max }}$
ex $130.0056 \mathrm{~s}=\frac{2 \cdot \pi \cdot 4.0 \mathrm{~m} \cdot 35 \mathrm{~m} / \mathrm{s} \cdot 1.5001 \mathrm{~m}^{2}}{10.15 \mathrm{~m}^{3} / \mathrm{s}}$
14) Total Maximum Discharge for Total of all Inlets
$f \mathrm{f} \mathrm{Q}_{\max }=\frac{2 \cdot \pi \cdot \mathrm{a}_{\mathrm{o}} \cdot \mathrm{A}_{\mathrm{b}} \cdot \mathrm{V}_{\max }}{\mathrm{T}}$
ex
$10.15044 \mathrm{~m}^{3} / \mathrm{s}=\frac{2 \cdot \pi \cdot 4.0 \mathrm{~m} \cdot 1.5001 \mathrm{~m}^{2} \cdot 35 \mathrm{~m} / \mathrm{s}}{130 \mathrm{~s}}$

Wave-Current Interaction ©

15) Angle Wave Orthogonal makes with Current in Non-propagated Wave Values on Forbidden Region
$f \mathrm{x} \theta=a \cos \left(\mathrm{~F} \cdot \frac{\left([\mathrm{~g}] \cdot \mathrm{d}_{\mathrm{T}}\right)^{0.5}}{\mathrm{~V}}\right)$
ex $3.767954^{\circ}=a \cos \left(0.57 \cdot \frac{([\mathrm{~g}] \cdot 5 \mathrm{~m})^{0.5}}{4 \mathrm{~m} / \mathrm{s}}\right)$
16) Channel Depth in Non-propagated Wave Values
$f \times d_{T}=[g] \cdot\left(\frac{\Omega \cdot T_{p}}{2 \cdot \pi}\right)^{\frac{1}{0.5}}$
ex $4.952265 \mathrm{~m}=[\mathrm{g}] \cdot\left(\frac{0.047 \cdot 95 \mathrm{~s}}{2 \cdot \pi}\right)^{\frac{1}{0.5}}$
17) Channel Depth in Non-propagated Wave values in Forbidden Region
$f \mathrm{f} \mathrm{d}_{\mathrm{T}}=\frac{\left(\left(\mathrm{V} \cdot \frac{\cos (\theta)}{\mathrm{F}}\right)\right)^{2}}{[\mathrm{~g}]}$
ex $5.000091 \mathrm{~m}=\frac{\left(\left(4 \mathrm{~m} / \mathrm{s} \cdot \frac{\cos \left(3.76^{\circ}\right)}{0.57}\right)\right)^{2}}{[\mathrm{~g}]}$
18) Channel Velocity in Non-propagated Wave Values in Forbidden Region
$f \mathbf{x}=\frac{\mathrm{F} \cdot\left([\mathrm{g}] \cdot \mathrm{d}_{\mathrm{T}}\right)^{0.5}}{\cos (\theta)}$
ex $3.999963 \mathrm{~m} / \mathrm{s}=\frac{0.57 \cdot([\mathrm{~g}] \cdot 5 \mathrm{~m})^{0.5}}{\cos \left(3.76^{\circ}\right)}$
19) Effect of Current on Wave Height
fx $\mathrm{H}=\mathrm{R}_{\mathrm{H}} \cdot \mathrm{H}_{\mathrm{A}}$
ex $80 \mathrm{~m}=0.8 \cdot 100 \mathrm{~m}$
20) Inlet Current Wave Height Factor
f. $\mathrm{R}_{\mathrm{H}}=\frac{\mathrm{H}}{\mathrm{H}_{\mathrm{A}}}$
ex $0.8=\frac{80 \mathrm{~m}}{100 \mathrm{~m}}$
21) Non-propagated Wave Values in Forbidden Region Boundary Line
$\mathrm{F}=\frac{\mathrm{V} \cdot \cos (\theta)}{\left([\mathrm{g}] \cdot \mathrm{d}_{\mathrm{T}}\right)^{0.5}}$
ex $0.570005=\frac{4 \mathrm{~m} / \mathrm{s} \cdot \cos \left(3.76^{\circ}\right)}{([\mathrm{g}] \cdot 5 \mathrm{~m})^{0.5}}$
22) Non-propagated Wave Values in Forbidden Region of Boundary Line
$\mathrm{fx}_{\mathrm{x}} \Omega=\left(\frac{2 \cdot \pi}{\mathrm{~T}_{\mathrm{p}}}\right) \cdot\left(\frac{\mathrm{d}_{\mathrm{T}}}{[\mathrm{g}]}\right)^{0.5}$
ex $0.047226=\left(\frac{2 \cdot \pi}{95 \mathrm{~s}}\right) \cdot\left(\frac{5 \mathrm{~m}}{[\mathrm{~g}]}\right)^{0.5}$
23) Wave Height Entering Inlet
$\mathrm{fx} \mathrm{H}_{\mathrm{A}}=\frac{\mathrm{H}}{\mathrm{R}_{\mathrm{H}}}$
ex $100 \mathrm{~m}=\frac{80 \mathrm{~m}}{0.8}$
24) Wave Period in Non-propagated Wave Values
$f \mathbf{x} \mathrm{~T}_{\mathrm{p}}=\frac{2 \cdot \pi \cdot\left(\frac{\mathrm{~d}_{\mathrm{T}}}{[\mathrm{g}]}\right)^{\frac{1}{2}}}{\Omega}$
$\operatorname{ex} 95.45676 \mathrm{~s}=\frac{2 \cdot \pi \cdot\left(\frac{5 \mathrm{~m}}{[\mathrm{~g}]}\right)^{\frac{1}{2}}}{0.047}$

Variables Used

- \mathbf{a}_{B} Bay Tide Amplitude
- $\mathbf{A}_{\mathbf{b}}$ Surface Area of Bay (Square Meter)
- $\mathbf{a}_{\mathbf{o}}$ Ocean Tide Amplitude (Meter)
- $\mathbf{d}_{\mathbf{T}}$ Time Averaged Water Depth (Meter)
- $\mathbf{D}_{\mathbf{t}}$ Channel Depth (Meter)
- F Non-propagated Wave Values of 'F'
- h Eckman Constant Depth (Meter)
- H Wave Height (Meter)
- H_{A} Wave Height Entering Inlet (Meter)
- k Phase Lag
- m Bank Slope
- $\mathbf{Q}_{\text {max }}$ Maximum Discharge of Total Inlets (Cubic Meter per Second)
- Qr River or Freshwater Inflow to a Bay (Cubic Meter per Minute)
- Qr' King's Dimensionless Variable for Freshwater
- $\mathbf{R}_{\mathbf{H}}$ Inlet Current Wave Height Factor
- S Superelevation (Meter)
- t Duration of Inflow (Hour)
- T Tidal Period (Second)
- $\mathbf{T}_{\mathbf{p}}$ Wave Period (Second)
- V Velocity in Channel (Meter per Second)
- $\mathbf{V}_{\text {max }}$ Maximum Velocity in the Inlet Throat (Meter per Second)
- W Channel Width corresponding to Mean Water Depth (Meter)
- β Water Surface Slope
- Δ Coefficient of Eckman
- $\Delta_{\text {BS }}$ Bay Superelevation (Meter)
- $\boldsymbol{\theta}$ Angle b/w Horizontal Velocity and Horizontal Wave (Degree)
- $\rho_{\text {water }}$ Water Density (Kilogram per Cubic Meter)
- t Shear Stress at the Water Surface (Newton per Square Meter)
- $\mathbf{\Omega}$ Non-propagated Wave Values

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Hour (h), Second (s)

Time Unit Conversion

- Measurement: Area in Square Meter $\left(\mathrm{m}^{2}\right)$

Area Unit Conversion

- Measurement: Pressure in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$)

Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Minute ($\mathrm{m}^{3} / \mathrm{min}$), Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion

Check other formula lists

- Bay Superelevation, Effect of Freshwater Inflow, Multiple Inlets and Wave-Current Interaction

Formulas

- Inlet Currents and Tidal Elevations Formulas \mathbb{Z}

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

