

Power System Stability Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Power System Stability Formulas

Power System Stability &

1) Accelerating Torque of Generator under Power System Stability

fx
$$T_{
m a}=T_{
m m}-T_{
m e}$$

Open Calculator

32N*m = 44N*m - 12N*m

2) Active Power by Infinite Bus

$$ext{P}_{
m inf} = rac{{{{
m (V)}}^2}}{{\sqrt {{{
m (R)}}^2 + {{
m (X_s)}^2}}}} - rac{{{{
m (V)}}^2}}{{{{
m (R)}}^2 + {{
m (X_s)}^2}}}$$

Open Calculator

$$= \frac{(11\text{V})^2}{\sqrt{{(2.1\Omega)}^2 + {(57\Omega)}^2}} - \frac{(11\text{V})^2}{{(2.1\Omega)}^2 + {(57\Omega)}^2}$$

3) Angular Displacement of Machine under Power System Stability

fx
$$\delta_{\mathrm{a}} = \theta_{\mathrm{m}} - \omega_{\mathrm{s}} \cdot \mathrm{t}$$

Open Calculator 🗗

$$= 20.2 \text{rad} = 109 \text{rad} - 8 \text{m/s} \cdot 11.1 \text{s}$$

4) Clearing Angle

 $\delta_{
m c} = rac{\pi \cdot {
m f} \cdot {
m P_i}}{2 \cdot {
m H}} \cdot ({
m t_c})^2 + \delta_{
m o}$

Open Calculator

 $ext{ex} \left[61.93019 ext{rad} = rac{\pi \cdot 56 ext{Hz} \cdot 200 ext{W}}{2 \cdot 39 ext{kg} \cdot ext{m}^2} \cdot \left(0.37 ext{s}
ight)^2 + 10^\circ
ight]$

5) Clearing Time

 $\mathbf{f}_{\mathbf{c}} egin{aligned} \mathbf{f}_{\mathbf{c}} = \sqrt{rac{2 \cdot \mathbf{H} \cdot (\mathbf{\delta}_{\mathbf{c}} - \mathbf{\delta}_{\mathbf{o}})}{\pi \cdot \mathbf{f} \cdot \mathbf{P}_{\mathbf{i}}}} \end{aligned}$

Open Calculator 2

 $ag{2 \cdot 39 ext{kg} \cdot ext{m}^2 \cdot (61.9 ext{rad} - 10\degree)}{\pi \cdot 56 ext{Hz} \cdot 200 ext{W}}$

6) Complex Power of Generator under Power Angle Curve

fx $S = V_p \cdot I_p$

Open Calculator

 $1282.42VA = 74V \cdot 17.33A$

7) Critical Clearing Angle under Power System Stability 🗗

Open Calculator $\delta_{
m cc} = a \cos igg(\cos (\delta_{
m max}) + igg(rac{{
m P_i}}{{
m P_{
m max}}} igg) \cdot (\delta_{
m max} - \delta_{
m o}) igg)$

$$\boxed{ 47.58211^\circ = a \cos \bigg(\cos(60^\circ) + \bigg(\frac{200 \mathrm{W}}{1000 \mathrm{W}} \bigg) \cdot (60^\circ - 10^\circ) \bigg) }$$

8) Critical Clearing Time under Power System Stability

 \mathbf{f} $\mathbf{t}_{cc} = \sqrt{rac{2 \cdot H \cdot (\delta_{cc} - \delta_{o})}{\pi \cdot f \cdot P_{max}}}$

Open Calculator

ex $0.017035 \mathrm{s} = \sqrt{rac{2 \cdot 39 \mathrm{kg \cdot m^2 \cdot (47.5\degree - 10\degree)}}{\pi \cdot 56 \mathrm{Hz} \cdot 1000 \mathrm{W}}}$

9) Damped Frequency of Oscillation in Power System Stability

fx $\omega_{
m df} = \omega_{
m fn} \cdot \sqrt{1-\left(\xi
ight)^2}$

Open Calculator

 $= 8.954887 \mathrm{Hz} = 9 \mathrm{Hz} \cdot \sqrt{1 - (0.1)^2}$

10) Inertia Constant of Machine

 $M = \frac{G \cdot H}{180 \cdot fs}$

Open Calculator 🚰

 $\mathbf{ex} \ 0.059091 = rac{15 \cdot 39 \mathrm{kg \cdot m^2}}{180 \cdot 55 \mathrm{Hz}}$

11) Kinetic Energy of Rotor

 $ext{KE} = \left(rac{1}{2}
ight) \cdot ext{J} \cdot \omega_{
m s}^2 \cdot 10^{-6}$

Open Calculator 🚰

 $oxed{ex} 0.000192 \mathrm{J} = \left(rac{1}{2}
ight) \cdot 6.0 \mathrm{kg} \cdot \mathrm{m}^2 \cdot \left(8 \mathrm{m/s}
ight)^2 \cdot 10^{-6}$

12) Lossless Power Delivered in Synchronous Machine 🗗

 $\mathbf{f} \mathbf{x} | \mathbf{P}_{l} = \mathbf{P}_{\max} \cdot \sin(\delta)$

Open Calculator 2

 $= 707.1068W = 1000W \cdot \sin(45^{\circ})$

13) Maximum Steady State Power Transfer 🗗

 $extbf{P}_{e, max} = rac{ ext{modulus}(E_g) \cdot ext{modulus}(V)}{ ext{modulus}(V)}$

Open Calculator

 $= \frac{\text{modulus}(160\text{V}) \cdot \text{modulus}(11\text{V})}{\text{modulus}(11\text{V})}$ 57Ω

14) Moment of Inertia of Machine under Power System Stability 🗗

 X_{s}

 $M_{
m i} = J \cdot \left(rac{2}{
m P}
ight)^2 \cdot \omega_{
m r} \cdot 10^{-6}$

Open Calculator

 $oxed{ex} 0.000726 ext{kg} \cdot ext{m}^2 = 6.0 ext{kg} \cdot ext{m}^2 \cdot \left(rac{2}{2}
ight)^2 \cdot 121 ext{m/s} \cdot 10^{-6}$

15) Output Power of Generator under Power System Stability

 $ext{P}_{ ext{g}} = rac{ ext{E}_{ ext{g}} \cdot ext{V}_{ ext{t}} \cdot ext{sin}ig(\zeta_{ ext{op}} ig)}{ ext{Y}_{ ext{t}}}$

Open Calculator

 $oxed{ex} 0.096 \mathrm{W} = rac{160 \mathrm{V} \cdot 3 \mathrm{V} \cdot \sin(90\degree)}{5000 \mathrm{AT/Wb}}$

16) Real Power of Generator under Power Angle Curve

 $\mathbf{P}_{\mathrm{e}} = rac{\mathrm{modulus}(\mathrm{E}_{\mathrm{g}}) \cdot \mathrm{modulus}(\mathrm{V})}{\mathbf{v}} \cdot \sin(\delta)$

Open Calculator 🚰

 $extbf{ex} 21.83347 ext{W} = rac{ ext{modulus}(160 ext{V}) \cdot ext{modulus}(11 ext{V})}{57\Omega} \cdot ext{sin}(45\degree)$

17) Rotor Acceleration

fx $P_{
m a}=P_{
m i}-P_{
m ep}$

Open Calculator

 $\texttt{ex} \ 100.1 \texttt{W} = 200 \texttt{W} - 99.9 \texttt{W}$

18) Speed of Synchronous Machine

 $\omega_{
m es} = \left(rac{
m P}{2}
ight) \cdot \omega_{
m r}$

Open Calculator 🗗

19) Synchronous Power of Power Angle Curve

 $extstyle P_{syn} = rac{ ext{modulus}(E_g) \cdot ext{modulus}(V)}{X_s} \cdot \cos(\delta)$

Open Calculator C

20) Time Constant in Power System Stability

$$oxed{ex} 0.110964 ext{s} = rac{2 \cdot 39 ext{kg} \cdot ext{m}^2}{\pi \cdot 8.95 ext{Hz} \cdot 25 ext{Ns/m}}$$

Variables Used

- D Damping Coefficient (Newton Second per Meter)
- **E**_g EMF of Generator (Volt)
- **f** Frequency (Hertz)
- fs Synchronous Frequency (Hertz)
- G Three Phase MVA Rating of Machine
- H Constant of Inertia (Kilogram Square Meter)
- I_D Phasor Current (Ampere)
- J Rotor Moment of Inertia (Kilogram Square Meter)
- KE Kinetic Energy of Rotor (Joule)
- M Inertia Constant of Machine
- M_i Moment of Inertia (Kilogram Square Meter)
- P Number of Machine Poles
- Pa Accelerating Power (Watt)
- Pe Real Power (Watt)
- P_{e,max} Maximum Steady State Power Transfer (Volt)
- Pep Electromagnetic Power (Watt)
- P_q Output Power of Generator (Watt)
- P_i Input Power (Watt)
- P_{inf} Active Power of Infinite Bus (Watt)
- P_I Lossless Power Delivered (Watt)
- P_{max} Maximum Power (Watt)
- P_{svn} Synchronous Power (Watt)

- R Resistance (Ohm)
- S Complex Power (Volt Ampere)
- t Time of Angular Displacement (Second)
- **T** Time Constant (Second)
- **T**_a Accelerating Torque (Newton Meter)
- t_c Clearing Time (Second)
- t_{cc} Critical Clearing Time (Second)
- Te Electrical Torque (Newton Meter)
- T_m Mechanical Torque (Newton Meter)
- **V** Voltage of Infinite Bus (Volt)
- V_D Phasor Voltage (Volt)
- V_t Terminal Voltage (Volt)
- X_d Magnetic Reluctance (Ampere-Turn per Weber)
- X_s Synchronous Reactance (Ohm)
- δ Electrical Power Angle (Degree)
- δ_a Angular Displacement of Machine (Radian)
- δ_c Clearing Angle (Radian)
- δ_{cc} Critical Clearing Angle (Degree)
- δ_{max} Maximum Clearing Angle (Degree)
- δ₀ Initial Power Angle (Degree)
- ζ_{op} Power Angle (Degree)
- θ_m Angular Displacement of Rotor (Radian)
- ξ Oscillation Constant
- ω_{df} Damping Frequency of Oscillation (Hertz)

- ω_{es} Speed of Synchronous Machine (Meter per Second)
- ω_{fn} Natural Frequency of Oscillation (Hertz)
- ω_r Rotor Speed of Synchronous Machine (Meter per Second)
- ω_s Synchronous Speed (Meter per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: acos, acos(Number)

 The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: modulus, modulus

 Modulus of a number is the remainder when that number is divided by another number.
- Function: sin, sin(Angle)

 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Electric Current in Ampere (A)

 Electric Current Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Energy in Joule (J)
 Energy Unit Conversion

- Measurement: Power in Watt (W), Volt Ampere (VA)
 Power Unit Conversion
- Measurement: Angle in Radian (rad), Degree (°)
 Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Torque in Newton Meter (N*m)
 Torque Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter (kg·m²)
 Moment of Inertia Unit Conversion
- Measurement: Damping Coefficient in Newton Second per Meter (Ns/m)
 Damping Coefficient Unit Conversion
- Measurement: Reluctance in Ampere-Turn per Weber (AT/Wb)

 Reluctance Unit Conversion

Check other formula lists

- Overhead AC Supply Formulas Underground AC Supply
- Overhead DC Supply Formulas Formulas Formulas
- Power System Stability
 Formulas

Underground DC Supply

Formulas C

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/11/2024 | 9:28:05 AM UTC

Please leave your feedback here...

