Webs under Concentrated Loads Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Webs under Concentrated Loads Formulas

Webs under Concentrated Loads E

1) Beam Depth for given Column Load

ex $147.9322 \mathrm{~mm}=\frac{160 \mathrm{~mm} \cdot\left(3 \cdot\left(\frac{100 \mathrm{~mm}}{15 \mathrm{~mm}}\right)^{1.5}\right)}{\left(\frac{235 \mathrm{kN}}{\left(67.5 \cdot(100 \mathrm{~mm})^{\frac{3}{2}}\right) \cdot \sqrt{250 \mathrm{MPa} \cdot 15 \mathrm{~mm}}}-1\right)}$
2) Clear Distance from Flanges for Concentrated Load with Stiffeners
$\mathbf{f x} h=\left(\frac{6800 \cdot \mathrm{t}_{\mathrm{w}}^{3}}{\mathrm{R}}\right) \cdot\left(1+\left(0.4 \cdot \mathrm{r}_{\mathrm{wf}}^{3}\right)\right)$
ex $121.5319 \mathrm{~mm}=\left(\frac{6800 \cdot(100 \mathrm{~mm})^{3}}{235 \mathrm{kN}}\right) \cdot\left(1+\left(0.4 \cdot(2)^{3}\right)\right)$
3) Length of Bearing for Applied Load at least Half of Depth of Beam
$f \mathrm{fx}=\left(\frac{\mathrm{R}}{\left(67.5 \cdot \mathrm{t}_{\mathrm{w}}^{\frac{3}{2}}\right) \cdot \sqrt{\mathrm{F}_{\mathrm{y} \cdot \mathrm{t}_{\mathrm{f}}}}}-1\right) \cdot \frac{\mathrm{D}}{3 \cdot\left(\frac{\mathrm{t}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{f}}}\right)^{1.5}}$
$\operatorname{ex} 130.8707 \mathrm{~mm}=\left(\frac{235 \mathrm{kN}}{\left(67.5 \cdot(100 \mathrm{~mm})^{\frac{3}{2}}\right) \cdot \sqrt{250 \mathrm{MPa} \cdot 15 \mathrm{~mm}}}-1\right) \cdot \frac{121 \mathrm{~mm}}{3 \cdot\left(\frac{100 \mathrm{~mm}}{15 \mathrm{~mm}}\right)^{1.5}}$
4) Length of Bearing if Column Load is at Distance of Half Beam Depth
$f x \mathrm{~N}=\left(\frac{\mathrm{R}}{\left(34 \cdot \mathrm{t}_{\mathrm{w}}^{\frac{3}{2}}\right) \cdot \sqrt{\mathrm{F}_{\mathrm{y}} \cdot \mathrm{t}_{\mathrm{f}}}}-1\right) \cdot \frac{\mathrm{D}}{3 \cdot\left(\frac{\mathrm{t}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{f}}}\right)^{1.5}}$
Open Calculator \leftrightarrows
$\mathbf{e x} 262.1256 \mathrm{~mm}=\left(\frac{235 \mathrm{kN}}{\left(34 \cdot(100 \mathrm{~mm})^{\frac{3}{2}}\right) \cdot \sqrt{250 \mathrm{MPa} \cdot 15 \mathrm{~mm}}}-1\right) \cdot \frac{121 \mathrm{~mm}}{3 \cdot\left(\frac{100 \mathrm{~mm}}{15 \mathrm{~mm}}\right)^{1.5}}$
5) Length of Bearing when Load applied at Distance Larger than Depth of Beam
$f \mathrm{x}=\left(\frac{\mathrm{R}}{\mathrm{f}=\left(\mathrm{t} \cdot \mathrm{t}_{\mathrm{w}}\right.}\right)-5 \cdot \mathrm{k}$
ex $135.29 \mathrm{~mm}=\left(\frac{235 \mathrm{kN}}{10.431 \mathrm{MPa} \cdot 100 \mathrm{~mm}}\right)-5 \cdot 18 \mathrm{~mm}$
6) Reaction of Concentrated Load applied at least Half of Depth of Beam
$f \mathrm{fx}=67.5 \cdot \mathrm{t}_{\mathrm{w}}^{2} \cdot\left(1+3 \cdot\left(\frac{\mathrm{~N}}{\mathrm{D}}\right) \cdot\left(\frac{\mathrm{t}_{\mathrm{w}}}{\mathrm{t}_{\mathrm{f}}}\right)^{1.5}\right) \cdot \sqrt{\frac{\mathrm{F}_{\mathrm{y}}}{\frac{t_{\mathrm{w}}}{\mathrm{t}_{\mathrm{f}}}}}$
ex
$286.3864 \mathrm{kN}=67.5 \cdot(100 \mathrm{~mm})^{2} \cdot\left(1+3 \cdot\left(\frac{160 \mathrm{~mm}}{121 \mathrm{~mm}}\right) \cdot\left(\frac{100 \mathrm{~mm}}{15 \mathrm{~mm}}\right)^{1.5}\right) \cdot \sqrt{\frac{250 \mathrm{MPa}}{\frac{100 \mathrm{~mm}}{15 \mathrm{~mm}}}}$
7) Reaction of Concentrated Load given Allowable Compressive Stress
$\mathrm{fx} R=\mathrm{f}_{\mathrm{a}} \cdot \mathrm{t}_{\mathrm{w}} \cdot(\mathrm{N}+5 \cdot \mathrm{k})$
ex $260.775 \mathrm{kN}=10.431 \mathrm{MPa} \cdot 100 \mathrm{~mm} \cdot(160 \mathrm{~mm}+5 \cdot 18 \mathrm{~mm})$
8) Reaction of Concentrated Load when Applied at distance at least Half of Beam Depth U
$f \times R=34 \cdot t_{w}^{2} \cdot\left(1+3 \cdot\left(\frac{N}{D}\right) \cdot\left(\frac{t_{w}}{t_{f}}\right)^{1.5}\right) \cdot \sqrt{\frac{F_{y}}{\frac{t_{w}}{t_{f}}}}$
ex
$144.2539 \mathrm{kN}=34 \cdot(100 \mathrm{~mm})^{2} \cdot\left(1+3 \cdot\left(\frac{160 \mathrm{~mm}}{121 \mathrm{~mm}}\right) \cdot\left(\frac{100 \mathrm{~mm}}{15 \mathrm{~mm}}\right)^{1.5}\right) \cdot \sqrt{\frac{250 \mathrm{MPa}}{\frac{100 \mathrm{~mm}}{15 \mathrm{~mm}}}}$
9) Relative Slenderness of Web and Flange
$f x r_{w f}=\frac{\frac{d_{c}}{t_{w}}}{\frac{l_{\max }}{b_{f}}}$
ex $1.077564=\frac{\frac{46 \mathrm{~mm}}{100 \mathrm{~mm}}}{\frac{1921 \mathrm{~mm}}{4500 \mathrm{~mm}}}$
10) Required Stiffeners if Concentrated Load exceeds Load of Reaction R
$\mathrm{fx} \mathrm{R}=\left(\frac{6800 \cdot \mathrm{t}_{\mathrm{w}}^{3}}{\mathrm{~h}}\right) \cdot\left(1+\left(0.4 \cdot \mathrm{r}_{\mathrm{wf}}^{3}\right)\right)$
ex $234.0984 \mathrm{kN}=\left(\frac{6800 \cdot(100 \mathrm{~mm})^{3}}{122 \mathrm{~mm}}\right) \cdot\left(1+\left(0.4 \cdot(2)^{3}\right)\right)$
11) Slenderness of Web and Flange given Stiffeners and Concentrated Load
$f_{\mathrm{x}} \mathrm{r}_{\mathrm{wf}}=\left(\frac{\left(\frac{\mathrm{R} \cdot \mathrm{h}}{6800 \cdot \mathrm{t}_{\mathrm{w}}^{3}}\right)-1}{0.4}\right)^{\frac{1}{3}}$
ex $2.003364=\left(\frac{\left(\frac{235 \mathrm{kN} \cdot 122 \mathrm{~mm}}{6800 \cdot(100 \mathrm{~mm})^{3}}\right)-1}{0.4}\right)^{\frac{1}{3}}$
12) Stress for Concentrated Load Applied at Distance Larger than Depth of Beam
$f \mathbf{f x}=\frac{R}{t_{w} \cdot(N+5 \cdot k)}$
ex $9.4 \mathrm{MPa}=\frac{235 \mathrm{kN}}{100 \mathrm{~mm} \cdot(160 \mathrm{~mm}+5 \cdot 18 \mathrm{~mm})}$
13) Stress when Concentrated Load is Applied Close to Beam End
$f \mathrm{f} \mathrm{f}_{\mathrm{a}}=\frac{\mathrm{R}}{\mathrm{t}_{\mathrm{w}} \cdot(\mathrm{N}+2.5 \cdot \mathrm{k})}$
ex $11.46341 \mathrm{MPa}=\frac{235 \mathrm{kN}}{100 \mathrm{~mm} \cdot(160 \mathrm{~mm}+2.5 \cdot 18 \mathrm{~mm})}$
14) Web Depth Clear of fillets
$f \mathrm{f} \mathrm{d}_{\mathrm{c}}=\mathrm{D}-2 \cdot \mathrm{k}$
ex $85 \mathrm{~mm}=121 \mathrm{~mm}-2 \cdot 18 \mathrm{~mm}$
15) Web Thickness for Given Stress
$f \mathrm{fx} \mathrm{t}_{\mathrm{w}}=\frac{\mathrm{R}}{\mathrm{f}_{\mathrm{a}} \cdot(\mathrm{N}+5 \cdot \mathrm{k})}$
ex $90.116 \mathrm{~mm}=\frac{235 \mathrm{kN}}{10.431 \mathrm{MPa} \cdot(160 \mathrm{~mm}+5 \cdot 18 \mathrm{~mm})}$
16) Web Thickness for given Stress Due to Load near Beam End
$f \mathrm{x} \mathrm{t}_{\mathrm{w}}=\frac{\mathrm{R}}{\mathrm{f}_{\mathrm{a}} \cdot(\mathrm{N}+2.5 \cdot \mathrm{k})}$
ex $109.8976 \mathrm{~mm}=\frac{235 \mathrm{kN}}{10.431 \mathrm{MPa} \cdot(160 \mathrm{~mm}+2.5 \cdot 18 \mathrm{~mm})}$

Variables Used

- $\mathbf{b}_{\mathbf{f}}$ Width of Compression Flange (Millimeter)
- D Depth of Section (Millimeter)
- $\mathbf{d}_{\mathbf{c}}$ Web Depth (Millimeter)
- $\mathbf{f}_{\mathbf{a}}$ Compressive Stress (Megapascal)
- $\mathrm{F}_{\mathbf{y}}$ Yield Stress of Steel (Megapascal)
- h Clear Distance between Flanges (Millimeter)
- k Distance from Flange to Web Fillet (Millimeter)
- I max Maximum Unbraced Length (Millimeter)
- \mathbf{N} Bearing or Plate Length (Millimeter)
- R Concentrated Load of Reaction (Kilonewton)
- $\mathbf{r}_{\text {wf }}$ Slenderness of Web and Flange
- $\mathbf{t}_{\mathbf{f}}$ Flange Thickness (Millimeter)
- $\mathbf{t}_{\mathbf{w}}$ Web Thickness (Millimeter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion 【

Check other formula lists

- Allowable-Stress Design Formulas
- Base and Bearing Plates Formulas
- Cold Formed or Light Weighted Steel Structures Formulas
- Webs under Concentrated Loads Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

