

Photonics Devices Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Photonics Devices Formulas

Photonics Devices

1) Contact Potential Difference

$$V_0 = rac{[\mathrm{BoltZ}] \cdot \mathrm{T}}{[\mathrm{Charge-e}]} \cdot \ln\!\left(rac{\mathrm{N_A} \cdot \mathrm{N_D}}{\left(\mathrm{n1_i}
ight)^2}
ight),$$

Open Calculator 🛂

2) Energy Density given Einstein Co-Efficients

$$\mathbf{x} = rac{8 \cdot [\mathrm{hP}] \cdot \mathrm{f}_\mathrm{r}^3}{\left[\mathrm{c}
ight]^3} \cdot \left(rac{1}{\exp\left(rac{\mathrm{h}_\mathrm{p} \cdot \mathrm{f}_\mathrm{r}}{\left[\mathrm{Bolt} \mathrm{Z}
ight] \cdot \mathrm{T}_\mathrm{o}}
ight) - 1}
ight)^{-1}$$

Open Calculator 🚰

$$= \frac{8 \cdot [\text{hP}] \cdot (57 \text{Hz})^3}{\left[\text{c}\right]^3} \cdot \left(\frac{1}{\exp\left(\frac{6.626 \text{E}^2 - 34 \cdot 57 \text{Hz}}{\left[\text{BoltZ}\right] \cdot 293 \text{K}}\right) - 1} \right)$$

3) Length of Cavity

$$\mathbf{L}_{\mathrm{c}} = rac{\lambda \cdot \mathrm{m}}{2}$$

Open Calculator 🗗

$$= \frac{3.9 \text{m} \cdot 4.04}{2}$$

4) Mode Number

$$\mathbf{m} = \frac{2 \cdot L_c \cdot n_{ri}}{\lambda}$$

Open Calculator

5) Net Phase Shift

 $\Delta \Phi = rac{\pi}{\lambda_{
m o}} \cdot ({
m n}_{
m ri})^3 \cdot {
m r} \cdot {
m V}_{
m CC}$

Open Calculator 🗗

6) Optical Power Radiated

 $ag{P_{opt} = \epsilon_{opto} \cdot [Stefan ext{-}BoltZ] \cdot A_s \cdot T_o^4}$

Open Calculator

 $\mathbf{ex} \ 0.001815 \mathrm{W} = 0.85 \cdot [\mathrm{Stefan\text{-}BoltZ}] \cdot 5.11 \mathrm{mm}^2 \cdot (293 \mathrm{K})^4$

7) Proton Concentration under Unbalanced Condition

 $\mathbf{p_c} = \mathrm{n_i} \cdot \mathrm{exp}igg(rac{\mathrm{E_i} - \mathrm{F_n}}{\mathrm{[BoltZ]} \cdot \mathrm{T}}igg)$

Open Calculator

 $\boxed{ 38.21311 \text{electrons/m}^3 = 3.6 \text{electrons/m}^3 \cdot \exp \bigg(\frac{3.78 \text{eV} - 3.7 \text{eV}}{[\text{BoltZ}] \cdot 393 \text{K}} \bigg) }$

8) Relative Population

 $\mathbf{n}_{\mathrm{rel}} = \exp\left(-rac{[\mathrm{hP}]\cdot \mathbf{v}_{\mathrm{rel}}}{[\mathrm{BoltZ}]\cdot T}
ight)$ ex $1 = \exp\left(-rac{[\mathrm{hP}]\cdot 8.9\mathrm{Hz}}{[\mathrm{BoltZ}]\cdot 393\mathrm{K}}
ight)$

Open Calculator

9) Saturation Current Density

 $\mathbf{f}_{0} = [ext{Charge-e}] \cdot \left(rac{D_{h}}{L_{h}} \cdot p_{n} + rac{D_{E}}{L_{e}} \cdot n_{p}
ight)$

Open Calculator

ex

 $1.6 ext{E^--7A/m}^2 = [ext{Charge-e}] \cdot \left(rac{1.2 ext{e}-3 ext{m}^2/ ext{s}}{0.35 ext{mm}} \cdot 2.56 ext{e}+11/ ext{m}^3 + rac{0.003387 ext{m}^2/ ext{s}}{0.71 ext{mm}} \cdot 2.55 ext{e}+10/ ext{m}^3
ight)$

10) Spectral Radiant Emittance

$$\mathbf{w}_{
m sre} = rac{2 \cdot \pi \cdot [h P] \cdot [c]^3}{\lambda_{
m vis}^5} \cdot rac{1}{\exp\left(rac{[h P] \cdot [c]}{\lambda_{
m vis} \cdot [Bolt Z] \cdot T}
ight) - 1}$$

Open Calculator

$$= \sum_{\text{5.7E}^--8\text{W}/(\text{m}^2\text{*Hz})} = \frac{2 \cdot \pi \cdot [\text{hP}] \cdot [\text{c}]^3}{(500 \text{nm})^5} \cdot \frac{1}{\exp\left(\frac{[\text{hP}] \cdot [\text{c}]}{500 \text{nm} \cdot [\text{BoltZ}] \cdot 393\text{K}}\right) - 1}$$

11) Total Current Density

$$\mathbf{f}$$
 $\mathbf{J} = \mathbf{J}_0 \cdot \left(\exp \left(rac{[\mathrm{Charge-e}] \cdot \mathbf{V}_0}{[\mathrm{BoltZ}] \cdot \mathbf{T}}
ight) - 1
ight)$

Open Calculator

$$\boxed{7.914809 \text{C/m}^2 = 1.6 \text{E}^-\text{7A/m}^2 \cdot \left(\exp \left(\frac{[\text{Charge-e}] \cdot 0.6 \text{V}}{[\text{BoltZ}] \cdot 393 \text{K}} \right) - 1 \right) }$$

12) Wavelength of Output Light

fx
$$\lambda_{
m o}={
m n}_{
m ri}\cdot\lambda$$

Open Calculator 🗗

$$\mathbf{ex} \ 3.939 \mathrm{m} = 1.01 \cdot 3.9 \mathrm{m}$$

13) Wavelength of Radiation in Vaccum

$$\mathbf{F}_{\mathrm{w}} = \mathbf{A} \cdot \left(rac{180}{\pi}
ight) \cdot 2 \cdot \mathbf{S}$$

Open Calculator

Variables Used

- A Apex Angle (Degree)
- As Area of Source (Square Millimeter)
- DE Electron Diffusion Coefficient (Square Meter Per Second)
- D_h Diffusion Coefficient of Hole (Square Meter Per Second)
- Ei Intrinsic Energy Level of Semiconductor (Electron-Volt)
- F_n Quasi Fermi Level of Electrons (Electron-Volt)
- **f**_r Frequency of Radiation (Hertz)
- Fw Wavelength of Wave (Meter)
- hp Planck's Constant
- J Total Current Density (Coulomb per Square Meter)
- J₀ Saturation Current Density (Ampere per Square Meter)
- L_c Length of Cavity (Meter)
- Le Diffusion Length of Electron (Millimeter)
- L_h Diffusion Length of Hole (Millimeter)
- m Mode Number
- N_A Acceptor Concentration (1 per Cubic Meter)
- N_D Donor Concentration (1 per Cubic Meter)
- n_i Intrinsic Electron Concentration (Electrons per Cubic Meter)
- **n**_p Electron Concentration in p-Region (1 per Cubic Meter)
- n_{rel} Relative Population
- n_{ri} Refractive Index
- n1; Intrinsic Carrier Concentration (1 per Cubic Meter)
- p_c Proton Concentration (Electrons per Cubic Meter)
- p_n Hole Concentration in n-Region (1 per Cubic Meter)
- Popt Optical Power Radiated (Watt)
- r Length of Fiber (Meter)
- S Single Pinhole

- **T** Absolute Temperature (Kelvin)
- To Temperature (Kelvin)
- **u** Energy Density (Joule per Cubic Meter)
- V₀ Voltage Across PN Junction (Volt)
- **V**_{CC} Supply Voltage (Volt)
- W_{sre} Spectral Radiant Emittance (Watt per Square Meter per Hertz)
- **ΔΦ** Net Phase Shift (Radian)
- ε_{opto} Emissivity
- λ Photon Wavelength (Meter)
- λ_o Wavelength of Light (Meter)
- λ_{vis} Wavelength of Visible Light (Nanometer)
- V_{rel} Relative Frequency (Hertz)

Constants, Functions, Measurements used

• Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

• Constant: [BoltZ], 1.38064852E-23

Boltzmann constant

Constant: [Charge-e], 1.60217662E-19

Charge of electron

Constant: [c], 299792458.0

Light speed in vacuum

Constant: [hP], 6.626070040E-34

Planck constant

• Constant: [Stefan-BoltZ], 5.670367E-8

Stefan-Boltzmann Constant

Function: exp, exp(Number)

n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.

• Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

• Measurement: Length in Meter (m), Millimeter (mm), Nanometer (nm)

Length Unit Conversion

Length Unit Conversion

• Measurement: Temperature in Kelvin (K)

Temperature Unit Conversion

• Measurement: Area in Square Millimeter (mm²)

Area Unit Conversion

• Measurement: Energy in Electron-Volt (eV)

Energy Unit Conversion

• Measurement: Power in Watt (W)

Power Unit Conversion 🖒

• Measurement: Angle in Radian (rad), Degree (°)

Angle Unit Conversion

• Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

• Measurement: Wavelength in Meter (m)

Wavelength Unit Conversion

- Measurement: Surface Charge Density in Coulomb per Square Meter (C/m²)
 Surface Charge Density Unit Conversion
- Measurement: Surface Current Density in Ampere per Square Meter (A/m²)

 Surface Current Density Unit Conversion
- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Diffusivity in Square Meter Per Second (m²/s)
 Diffusivity Unit Conversion
- Measurement: Carrier Concentration in 1 per Cubic Meter (1/m³)

 Carrier Concentration Unit Conversion
- Measurement: Energy Density in Joule per Cubic Meter (J/m³)
 Energy Density Unit Conversion
- Measurement: Spectral Exitance Per Unit Frequency in Watt per Square Meter per Hertz
 (W/(m²*Hz))
 Spectral Exitance Per Unit Frequency Unit Conversion
- Measurement: Electron Density in Electrons per Cubic Meter (electrons/m³)

 Electron Density Unit Conversion

Check other formula lists

- Devices with Optical Components
 Formulas
- Lasers Formulas
- Photonics Devices Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/12/2024 | 7:47:10 AM UTC

Please leave your feedback here...

