

Lateral Control Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Lateral Control Formulas

Lateral Control

1) Aileron Control Effectiveness given Aileron Deflection

Open Calculator

$$au = rac{\mathrm{C_l}}{\mathrm{C_{llpha} \cdot \delta_a}}$$

$$= 0.663636 = \frac{0.073}{0.02 \cdot 5.5 \text{rad}}$$

2) Aileron Deflection given Aileron Lift Coefficient

 $\mathbf{C}_{
m l} = rac{2 \cdot {
m C}_{
m law} \cdot {
m r} \cdot {
m \delta}_{
m a}}{{
m S} \cdot {
m b}} \cdot \int ({
m c} \cdot x, x, {
m y}_1, {
m y}_2)$

Open Calculator 🗗

3) Aileron Section lift Coefficient given Aileron Deflection

$$\left|\mathbf{C}_{l}=C_{llpha}\cdot\left(rac{dlpha}{d\delta_{a}}
ight)\cdot\delta_{a}
ight|$$

Open Calculator

$$oxed{ex} 0.073333 = 0.02 \cdot \left(rac{3.0 \mathrm{rad}}{4.5 \mathrm{rad}}
ight) \cdot 5.5 \mathrm{rad}$$

4) Aileron Section Lift Coefficient given Control Effectiveness

Open Calculator

$$0.0726 = 0.02 \cdot 0.66 \cdot 5.5 \text{rad}$$

5) Deflection Angle given Lift Coefficient

$$\delta_{\mathrm{a}} = rac{C_{\mathrm{l}}}{C_{\mathrm{l}lpha} \cdot au}$$

Open Calculator 🗗

$$= \frac{0.073}{0.02 \cdot 0.66}$$

6) Lift Coefficient Slope Roll Control

$$\mathbf{f}\mathbf{x} egin{bmatrix} \mathbf{C}_{\mathrm{l}lpha} = rac{\mathbf{C}_{\mathrm{l}}}{\delta_{\mathrm{a}} \cdot au} \end{bmatrix}$$

Open Calculator 🗗

$$= 0.02011 = \frac{0.073}{5.5 \text{rad} \cdot 0.66}$$

7) Lift Coefficient with respect to Roll Rate

$$extstyle extstyle ext$$

Open Calculator

$$0.038043 = -igg(rac{2 \cdot 0.5 ext{rad/s}^2}{184 ext{m}^2 \cdot 200 ext{m} \cdot 50 ext{m/s}}igg) \cdot \int igg(-0.1 \cdot 2.1 ext{m} \cdot x^2, x, 0, rac{200 ext{m}}{2}igg)$$

8) Lift given Roll Rate

$$\mathbf{L} = -2 \cdot \int \! \left(\mathrm{Cl}_{a} \cdot \left(rac{\mathrm{p} \cdot x}{\mathrm{u}_{0}}
ight) \cdot \mathrm{Q} \cdot \mathrm{c} \cdot x, x, 0, rac{\mathrm{b}}{2}
ight)$$

Open Calculator C

ex

$$oxed{770 ext{N} = -2 \cdot \int igg(-0.1 \cdot igg(rac{0.5 ext{rad/s}^2 \cdot x}{50 ext{m/s}}igg) \cdot 0.55 ext{rad/s}^2 \cdot 2.1 ext{m} \cdot x, x, 0, rac{200 ext{m}}{2}igg)}$$

9) Roll Control Power

$$extstyle \operatorname{Cl}_{\deltalpha} = rac{2\cdot \operatorname{C}_{\operatorname{l}lpha\mathrm{w}}\cdot au}{\operatorname{S}\cdot \operatorname{b}}\cdot \int (\operatorname{c}\cdot x,x,\operatorname{y}_1,\operatorname{y}_2)$$

Open Calculator 🗗

$$= 2 \cdot 0.23 \cdot 0.66 \over 17 \text{m}^2 \cdot 200 \text{m} } \cdot \int (2.1 \text{m} \cdot x, x, 1.5 \text{m}, 12 \text{m})$$

10) Roll Damping Coefficient

$$ext{Cl}_{ ext{p}} = -rac{4\cdot ext{C}_{ ext{l}_{lpha ext{w}}}}{ ext{S}\cdot ext{b}^2}\cdot\int\!\left(ext{c}\cdot x^2,x,0,rac{ ext{b}}{2}
ight)$$

Open Calculator

$$oxed{ex} -0.947059 = -rac{4\cdot 0.23}{17 ext{m}^2\cdot \left(200 ext{m}
ight)^2} \cdot \int igg(2.1 ext{m}\cdot x^2, x, 0, rac{200 ext{m}}{2}igg)$$

Variables Used

- **b** Wingspan (Meter)
- C Chord (Meter)
- C1 Lift Coefficient Roll Control
- C_{Iα} Lift Coefficient Slope Roll Control
- Claw Derivative of Wing Lift Coefficient
- Cl Lift Coefficient with respect to Roll Rate
- Clp Roll Damping Coefficient
- Cl_α Lift Curve Slope
- Cl_{δα} Roll Control Power (Radian)
- dα Rate of change of Angle of Attack (Radian)
- dδ_a Rate of change of Deflection of Aileron (Radian)
- L Lift with respect to Roll Rate (Newton)
- p Roll Rate (Radian per Square Second)
- Q Pitch Rate (Radian per Square Second)
- S Wing Area (Square Meter)
- S_r Wing reference Area (Square Meter)
- u₀ Reference Velocity across X Axis (Meter per Second)
- y₁ Initial Length (Meter)
- y₂ Final Length (Meter)
- δ_a Deflection of Aileron (Radian)
- T Flap Effectiveness Parameter

Constants, Functions, Measurements used

- Function: int, int(expr, arg, from, to)

 The definite integral can be used to calculate net signed area, which is the area above the x -axis minus the area below the x -axis.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Radian (rad)
 Angle Unit Conversion
- Measurement: Angular Acceleration in Radian per Square Second (rad/s²)
 Angular Acceleration Unit Conversion

Check other formula lists

Directional Stability Formulas • Lateral Control Formulas •

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/17/2024 | 8:04:10 AM UTC

Please leave your feedback here...

