胃

Lasers Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Lasers Formulas

Lasers

1) Absorption Co-Efficient $\boxed{\square}$
$f \mathrm{x} \alpha_{\mathrm{a}}=\frac{\mathrm{g}_{2}}{\mathrm{~g}_{1}} \cdot\left(\mathrm{~N}_{1}-\mathrm{N}_{2}\right) \cdot \frac{\mathrm{B}_{21} \cdot[\mathrm{hP}] \cdot \mathrm{v}_{21} \cdot \mathrm{n}_{\mathrm{ri}}}{[\mathrm{c}]}$

ex

$9.7 \mathrm{E}^{\wedge}-41 / \mathrm{m}=\frac{24}{12} \cdot\left(1.85 \mathrm{electrons} / \mathrm{m}^{3}-1.502\right.$ electrons $\left./ \mathrm{m}^{3}\right) \cdot \frac{1.52 \mathrm{~m}^{3} \cdot[\mathrm{hP}] \cdot 41 \mathrm{~Hz} \cdot 1.01}{[\mathrm{c}]}$
2) Half Wave Voltage
$\mathrm{fx} \mathrm{V}_{\pi}=\frac{\lambda_{\mathrm{o}}}{\mathrm{r} \cdot \mathrm{n}_{\mathrm{ri}}^{3}}$
Open Calculator
ex $0.166224 \mathrm{~V}=\frac{3.939 \mathrm{~m}}{23 \mathrm{~m} \cdot(1.01)^{3}}$
3) Intensity of Signal at Distance
fx $I_{x}=I_{o} \cdot \exp \left(-\operatorname{ad}_{c} \cdot x\right)$
ex $2.717638 \mathrm{~W} / \mathrm{m}^{2}=3.5 \mathrm{~W} / \mathrm{m}^{2} \cdot \exp (-2.3 \cdot 0.11 \mathrm{~m})$
4) Irradiance 【
$f \mathbf{x} \mathrm{I}_{\mathrm{t}}=\mathrm{E}_{\mathrm{o}} \cdot \exp \left(\mathrm{k}_{\mathrm{s}} \cdot \mathrm{x}_{\mathrm{l}}\right)$
Open Calculator [3]
ex $1.510116 \mathrm{~W} / \mathrm{m}^{2}=1.51 \mathrm{~W} / \mathrm{m}^{2} \cdot \exp (1.502 \cdot 51 \mu \mathrm{~m})$
5) Plane of Polarizer
$f \mathbf{x} P=\mathrm{P}^{\prime} \cdot\left(\cos (\theta)^{2}\right)$
ex $1.995=2.66 \cdot\left(\cos \left(30^{\circ}\right)^{2}\right)$
6) Plane of Transmission of Analyzer 凹
$f \mathbf{x} \mathrm{P}^{\prime}=\frac{\mathrm{P}}{(\cos (\theta))^{2}}$
ex $2.66=\frac{1.995}{\left(\cos \left(30^{\circ}\right)\right)^{2}}$
7) Ratio of Rate of Spontaneous and Stimulated Emission
$f \mathrm{fx} \mathrm{R}_{\mathrm{s}}=\exp \left(\left(\frac{[\mathrm{hP}] \cdot \mathrm{f}_{\mathrm{r}}}{[\text { BoltZ }] \cdot \mathrm{T}_{\mathrm{o}}}\right)-1\right)$
ex $0.367879=\exp \left(\left(\frac{[\mathrm{hP}] \cdot 57 \mathrm{~Hz}}{[\text { BoltZ }] \cdot 293 \mathrm{~K}}\right)-1\right)$
8) Round Trip Gain
$f \mathbf{f x}=\mathrm{R}_{1} \cdot \mathrm{R}_{2} \cdot\left(\exp \left(2 \cdot\left(\mathrm{k}_{\mathrm{s}}-\gamma_{\mathrm{eff}}\right) \cdot \mathrm{L}_{\mathrm{l}}\right)\right)$
ex $3 \mathrm{E}^{\wedge}-16=2.41 \cdot 3.01 \cdot(\exp (2 \cdot(1.502-2.4) \cdot 21 \mathrm{~m}))$
9) Single Pinhole
$f \times S=\frac{F_{w}}{\left(\mathrm{~A} \cdot\left(\frac{180}{\pi}\right)\right) \cdot 2}$
ex $24.5098=\frac{400 \mathrm{~m}}{\left(8.16^{\circ} \cdot\left(\frac{180}{\pi}\right)\right) \cdot 2}$
10) Small Signal Gain Coefficient
$\mathrm{fx} \mathrm{k}_{\mathrm{s}}=\mathrm{N}_{2}-\left(\frac{\mathrm{g}_{2}}{\mathrm{~g}_{1}}\right) \cdot\left(\mathrm{N}_{1}\right) \cdot \frac{\mathrm{B}_{21} \cdot[\mathrm{hP}] \cdot \mathrm{v}_{21} \cdot \mathrm{n}_{\mathrm{ri}}}{[\mathrm{c}]}$
ex $1.502=1.502$ electrons $/ \mathrm{m}^{3}-\left(\frac{24}{12}\right) \cdot\left(1.85\right.$ electrons $\left./ \mathrm{m}^{3}\right) \cdot \frac{1.52 \mathrm{~m}^{3} \cdot[\mathrm{hP}] \cdot 41 \mathrm{~Hz} \cdot 1.01}{[\mathrm{c}]}$
11) Transmittance
$\mathrm{fx}_{\mathrm{x}} \mathrm{t}=\left(\sin \left(\frac{\pi}{\lambda_{\mathrm{o}}} \cdot\left(\mathrm{n}_{\mathrm{ri}}\right)^{3} \cdot \mathrm{r} \cdot \mathrm{V}_{\mathrm{CC}}\right)\right)^{2}$
ex $0.852309=\left(\sin \left(\frac{\pi}{3.939 \mathrm{~m}} \cdot(1.01)^{3} \cdot 23 \mathrm{~m} \cdot 1.6 \mathrm{~V}\right)\right)^{2}$
12) Variable Refractive Index of The GRIN Lens
$\mathrm{fx} \mathrm{n}_{\mathrm{r}}=\mathrm{n}_{1} \cdot\left(1-\frac{\mathrm{A}_{\text {con }} \cdot \mathrm{R}_{\text {lens }}^{2}}{2}\right)$
ex $1.453125=1.5 \cdot\left(1-\frac{10000 \cdot(0.0025 \mathrm{~m})^{2}}{2}\right)$

Variables Used

- A Apex Angle (Degree)
- $\mathbf{A}_{\text {con }}$ Positive Constant
- ad $_{\mathbf{c}}$ Decay Constant
- $\mathbf{B}_{\mathbf{2 1}}$ Einstein Coefficient for Stimulated Absorption (Cubic Meter)
- $\mathbf{E}_{\mathbf{o}}$ Irradiation of Light Incident (Watt per Square Meter)
- $\mathbf{f}_{\mathbf{r}}$ Frequency of Radiation (Hertz)
- $\mathrm{F}_{\mathbf{w}}$ Wavelength of Wave (Meter)
- G Round Trip Gain
- \mathbf{g}_{1} Degeneracy of Initial State
- \mathbf{g}_{2} Degeneracy of Final State
- I I Initial Intensity (Watt per Square Meter)
- $\mathbf{I}_{\mathbf{t}}$ Irridance of Transmitted Beam (Watt per Square Meter)
- $\mathbf{I}_{\mathbf{x}}$ Intensity of Signal at Distance (Watt per Square Meter)
- $\mathbf{k}_{\mathbf{s}}$ Signal Gain Coefficient
- $\mathbf{L}_{\boldsymbol{I}}$ Length of Laser Cavity (Meter)
- \mathbf{n}_{1} Refractive Index of Medium 1
- \mathbf{N}_{1} Density of Atoms Initial State (Electrons per Cubic Meter)
- $\mathbf{N}_{\mathbf{2}}$ Density of Atoms Final State (Electrons per Cubic Meter)
- $\mathbf{n}_{\mathbf{r}}$ Apparent Refractive Index
- n_{ri} Refractive Index
- P Plane of Polarizer
- P' Plane of Transmission of Analyzer
- r Length of Fiber (Meter)
- $\mathbf{R}_{\mathbf{1}}$ Reflectances
- $\mathbf{R}_{\mathbf{2}}$ Reflectances Separated by L
- $\mathbf{R}_{\text {lens }}$ Radius of Lens (Meter)
- $\mathbf{R}_{\mathbf{s}}$ Ratio of Rate of Spontaneous to Stimulus Emission
- S Single Pinhole
- t Transmittance
- $\mathbf{T}_{\mathbf{0}}$ Temperature (Kelvin)
- $\mathbf{v}_{\mathbf{2 1}}$ Frequency of Transition (Hertz)
- $\mathbf{V}_{\mathbf{C C}}$ Supply Voltage (Volt)
- $\mathbf{V}_{\boldsymbol{\pi}}$ Half Wave Voltage (Volt)
- x Distance of Measuring (Meter)
- $\mathbf{x}_{\mathbf{I}}$ Distance Travelled by Laser Beam (Micrometer)
- $\boldsymbol{\alpha}_{\mathrm{a}}$ Absorption Coefficient (1 per Meter)
- Yeff Effective Loss Coefficient
- $\boldsymbol{\theta}$ Theta (Degree)
- $\boldsymbol{\lambda}_{\mathbf{0}}$ Wavelength of Light (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [BoltZ], 1.38064852E-23

Boltzmann constant

- Constant: [c], 299792458.0

Light speed in vacuum

- Constant: [hP], 6.626070040E-34

Planck constant

- Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: exp, $\exp ($ Number $)$
n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: sin, \sin (Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m), Micrometer ($\mu \mathrm{m}$)

Length Unit Conversion

- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Volume in Cubic Meter (m^{3}) Volume Unit Conversion
- Measurement: Angle in Degree (${ }^{\circ}$) Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Wavelength in Meter (m) Wavelength Unit Conversion
- Measurement: Electric Potential in Volt (V) Electric Potential Unit Conversion
- Measurement: Wave Number in 1 per Meter (1/m) Wave Number Unit Conversion
- Measurement: Intensity in Watt per Square Meter (W/m²) Intensity Unit Conversion
- Measurement: Irradiation in Watt per Square Meter (W/m²) Irradiation Unit Conversion
- Measurement: Electron Density in Electrons per Cubic Meter (electrons $/ \mathrm{m}^{3}$) Electron Density Unit Conversion

Check other formula lists

- Devices with Optical Components Formulas
- Lasers Formulas
- Photonics Devices Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

