
calculatoratoz.com

unitsconverters.com

Number of Connectors Required for Building Construction Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Number of Connectors Required for Building Construction Formulas

Number of Connectors Required for Building Construction

1) Maximum Moment in Span given Number of Shear Connectors
$f \mathbf{x} \mathrm{M}_{\max }=\frac{\mathrm{M} \cdot \mathrm{N}_{1} \cdot \beta}{(\mathrm{~N} \cdot(\beta-1))+\mathrm{N}_{1}}$
Open Calculator
ex $108 \mathrm{kN}^{*} \mathrm{~m}=\frac{30 \mathrm{kN}^{*} \mathrm{~m} \cdot 12 \cdot 0.6}{(25 \cdot(0.6-1))+12}$
2) Moment at Concentrated Load given Number of Shear Connectors ๔
$f \mathbf{x} \mathbf{M}=\left(\frac{(N \cdot(\beta-1))+N_{1}}{N_{1} \cdot \beta}\right) \cdot M_{\max }$
Open Calculator $\sqrt{ }$
ex $28.05556 \mathrm{kN}^{*} \mathrm{~m}=\left(\frac{(25 \cdot(0.6-1))+12}{12 \cdot 0.6}\right) \cdot 101 \mathrm{kN}^{*} \mathrm{~m}$
3) Number of Shear Connectors
$\mathrm{fx} \mathrm{N}=\mathrm{N}_{1} \cdot \frac{\left(\left(\frac{\mathrm{M} \cdot \beta}{\mathrm{M}_{\max }}\right)-1\right)}{\beta-1}$
$\operatorname{ex} 24.65347=12 \cdot \frac{\left(\left(\frac{30 \mathrm{kN}^{*} \mathrm{~m} \cdot 0.6}{101 \mathrm{kN}^{*} \mathrm{~m}}\right)-1\right)}{0.6-1}$
4) Number of Shear Connectors required between Maximum and Zero Moment
$f \times N_{1}=\frac{N \cdot(\beta-1)}{\left(\frac{M \cdot \beta}{M_{\max }}\right)-1}$

$$
\mathbf{e x} 12.16867=\frac{25 \cdot(0.6-1)}{\left(\frac{30 \mathrm{kN}^{*} \mathrm{~m} \cdot 0.6}{101 \mathrm{kN}{ }^{*} \mathrm{~m}}\right)-1}
$$

5) Total Number of Connectors Resisting Total Horizontal Shear

ex $24042.86=\frac{4207.5 \mathrm{kN}}{175 \mathrm{~N}}$

Shear on Connectors ©

6) Actual Area of Effective Concrete Flange given Total Horizontal Shear \square
$\mathrm{fx} \mathrm{A}_{\mathrm{c}}=\frac{2 \cdot \mathrm{~V}_{\mathrm{h}}}{0.85 \cdot \mathrm{f}_{\mathrm{c}}}$
Open Calculator
ex $200000 \mathrm{~mm}^{2}=\frac{2 \cdot 4207.5 \mathrm{kN}}{0.85 \cdot 49.5 \mathrm{MPa}}$
7) Area of Longitudinal Reinforcement at Support within Effective Area given Total Horizontal Shear
$f \mathrm{f} \mathrm{A}_{\mathrm{sr}}=\frac{2 \cdot \mathrm{~V}_{\mathrm{h}}}{\mathrm{F}_{\mathrm{yr}}}$
ex $56100 \mathrm{~mm}^{2}=\frac{2 \cdot 4207.5 \mathrm{kN}}{150 \mathrm{MPa}}$
8) Area of Steel Beam given Total Horizontal Shear to be Resisted by Shear Connectors
$f \mathrm{~A} \mathrm{~A}_{\mathrm{s}}=\frac{2 \cdot V_{\mathrm{h}}}{\mathrm{F}_{\mathrm{y}}}$
ex $33660 \mathrm{~mm}^{2}=\frac{2 \cdot 4207.5 \mathrm{kN}}{250 \mathrm{MPa}}$
9) Specified Compressive Strength of Concrete given Total Horizontal Shear
$f \mathrm{fx} \mathrm{f}_{\mathrm{c}}=\frac{2 \cdot \mathrm{~V}_{\mathrm{h}}}{0.85 \cdot \mathrm{~A}_{\mathrm{c}}}$

ex $49.5 \mathrm{MPa}=\frac{2 \cdot 4207.5 \mathrm{kN}}{0.85 \cdot 200000 \mathrm{~mm}^{2}}$

10) Specified Minimum Yield Stress of Longitudinal Reinforcement given Total Horizontal Shear
$f \mathrm{f} \mathrm{F}_{\mathrm{yr}}=\frac{2 \cdot \mathrm{~V}_{\mathrm{h}}}{\mathrm{A}_{\mathrm{sr}}}$
ex $150 \mathrm{MPa}=\frac{2 \cdot 4207.5 \mathrm{kN}}{56100 \mathrm{~mm}^{2}}$
11) Total Horizontal Shear
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}_{\mathrm{h}}=\frac{0.85 \cdot \mathrm{f}_{\mathrm{c}} \cdot \mathrm{A}_{\mathrm{c}}}{2}$
ex $4207.5 \mathrm{kN}=\frac{0.85 \cdot 49.5 \mathrm{MPa} \cdot 200000 \mathrm{~mm}^{2}}{2}$
12) Total Horizontal Shear between Interior Support and Point of Contraflexure
$f \mathrm{fx} \mathrm{V}_{\mathrm{h}}=\frac{\mathrm{A}_{\mathrm{sr}} \cdot \mathrm{F}_{\mathrm{yr}}}{2}$
ex $4207.5 \mathrm{kN}=\frac{56100 \mathrm{~mm}^{2} \cdot 150 \mathrm{MPa}}{2}$
13) Total Horizontal Shear to be Resisted by Shear Connectors
$f \mathrm{fx} \mathrm{V}_{\mathrm{h}}=\frac{\mathrm{A}_{\mathrm{s}} \cdot \mathrm{F}_{\mathrm{y}}}{2}$
Open Calculator
ex $4207.5 \mathrm{kN}=\frac{33660 \mathrm{~mm}^{2} \cdot 250 \mathrm{MPa}}{2}$
14) Yield Strength of Steel given Total Horizontal Shear to be Resisted by Shear Connectors
$f \mathrm{f} \mathrm{F}_{\mathrm{y}}=\frac{2 \cdot \mathrm{~V}_{\mathrm{h}}}{\mathrm{A}_{\mathrm{s}}}$
Open Calculator
ex $250 \mathrm{MPa}=\frac{2 \cdot 4207.5 \mathrm{kN}}{33660 \mathrm{~mm}^{2}}$

Variables Used

- $\mathbf{A}_{\mathbf{c}}$ Actual Area of Effective Concrete Flange (Square Millimeter)
- $\mathbf{A}_{\mathbf{s}}$ Area of Steel Beam (Square Millimeter)
- $\mathbf{A}_{\mathbf{s r}}$ Area of Longitudinal Reinforcement (Square Millimeter)
- $\mathbf{f}_{\mathbf{c}}$ 28-Day Compressive Strength of Concrete (Megapascal)
- $\mathbf{F}_{\mathbf{y}}$ Yield Stress of Steel (Megapascal)
- $\mathbf{F}_{\mathbf{y r}}$ Specified Minimum Yield Stress (Megapascal)
- M Moment at Concentrated Load (Kilonewton Meter)
- $\mathbf{M}_{\text {max }}$ Maximum Moment in Span (Kilonewton Meter)
- \mathbf{N} Number of Shear Connectors
- \mathbf{N}_{1} No. of Shear Connectors Required
- q Allowable Shear for One Connector (Newton)
- $\mathbf{V}_{\mathbf{h}}$ Total Horizontal Shear (Kilonewton)
- $\boldsymbol{\beta}$ Beta

Constants, Functions, Measurements used

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Force in Kilonewton (kN), Newton (N)

Force Unit Conversion

- Measurement: Torque in Kilonewton Meter (kN*m)

Torque Unit Conversion

- Measurement: Moment of Force in Kilonewton Meter (kN*m)

Moment of Force Unit Conversion

- Measurement: Stress in Megapascal (MPa)

Stress Unit Conversion

Check other formula lists

- Allowable-Stress Design Formulas
- Base and Bearing Plates Formulas
- Bearing, Stresses, Plate Girders \&• Ponding Considerations Formulas
- Cold Formed or Light Weighted Steel Structures Formulas \longleftarrow
- Composite Construction in

Buildings Formulas

- Design of Stiffeners under Loads Formulas
- Economical Structural Steel Formulas
Number of Connectors Required for Building Construction Formulas
- Webs under Concentrated Loads Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

