

Number of Connectors Required for Building Construction Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Number of Connectors Required for Building Construction Formulas

Number of Connectors Required for Building Construction

1) Maximum Moment in Span given Number of Shear Connectors

Open Calculator

$$\mathbf{M}_{ ext{max}} = rac{\mathbf{M} \cdot \mathbf{N}_1 \cdot \mathbf{eta}}{(\mathbf{N} \cdot (\mathbf{eta} - 1)) + \mathbf{N}_1}$$

ex
$$108$$
kN*m = $\frac{30$ kN*m · $12 \cdot 0.6$ } $(25 \cdot (0.6 - 1)) + 12$

2) Moment at Concentrated Load given Number of Shear Connectors

$$\mathbf{M} = \left(rac{(\mathrm{N}\cdot(eta-1)) + \mathrm{N}_1}{\mathrm{N}_1\cdoteta}
ight)\cdot\mathrm{M}_{\mathrm{max}}$$

Open Calculator 🚰

ex
$$28.05556 \text{kN*m} = \left(\frac{(25 \cdot (0.6 - 1)) + 12}{12 \cdot 0.6}\right) \cdot 101 \text{kN*m}$$

3) Number of Shear Connectors 🗗

Open Calculator

$$oxed{ex} 24.65347 = 12 \cdot rac{\left(\left(rac{30 \mathrm{kN^*m \cdot 0.6}}{101 \mathrm{kN^*m}}
ight) - 1
ight)}{0.6 - 1}$$

4) Number of Shear Connectors required between Maximum and Zero Moment

$$N_1 = rac{N\cdot(eta-1)}{\left(rac{M\cdoteta}{M_{
m max}}
ight)-1}$$

Open Calculator

ex
$$12.16867 = rac{25 \cdot (0.6-1)}{\left(rac{30 \mathrm{kN^*m \cdot 0.6}}{101 \mathrm{kN^*m}}
ight) - 1}$$

5) Total Number of Connectors Resisting Total Horizontal Shear

Open Calculator 🗗

$$= 24042.86 = \frac{4207.5 \text{kN}}{175 \text{N}}$$

Shear on Connectors

6) Actual Area of Effective Concrete Flange given Total Horizontal Shear

Open Calculator 🗗

$$extbf{ex} 200000 ext{mm}^2 = rac{2 \cdot 4207.5 ext{kN}}{0.85 \cdot 49.5 ext{MPa}}$$

7) Area of Longitudinal Reinforcement at Support within Effective Area given Total Horizontal Shear

Open Calculator 🗗

$$\mathbf{ex}$$
 $56100 \mathrm{mm}^2 = rac{2 \cdot 4207.5 \mathrm{kN}}{150 \mathrm{MPa}}$

8) Area of Steel Beam given Total Horizontal Shear to be Resisted by Shear Connectors

Open Calculator

$$=$$
 $33660 ext{mm}^2 = rac{2 \cdot 4207.5 ext{kN}}{250 ext{MPa}}$

9) Specified Compressive Strength of Concrete given Total Horizontal Shear

Open Calculator 🗗

$$=$$
 $49.5 \mathrm{MPa} = rac{2 \cdot 4207.5 \mathrm{kN}}{0.85 \cdot 200000 \mathrm{mm}^2}$

10) Specified Minimum Yield Stress of Longitudinal Reinforcement given Total Horizontal Shear

Open Calculator

$$ext{ex} 150 ext{MPa} = rac{2 \cdot 4207.5 ext{kN}}{56100 ext{mm}^2}$$

11) Total Horizontal Shear 🛂

Open Calculator

$$ext{ex} egin{array}{c} 4207.5 ext{kN} = rac{0.85 \cdot 49.5 ext{MPa} \cdot 200000 ext{mm}^2}{2} \end{array}$$

12) Total Horizontal Shear between Interior Support and Point of Contraflexure

Open Calculator

 $extstyle = rac{56100 ext{mm}^2 \cdot 150 ext{MPa}}{2}$

13) Total Horizontal Shear to be Resisted by Shear Connectors

Open Calculator

 $ext{ex} \ 4207.5 ext{kN} = rac{33660 ext{mm}^2 \cdot 250 ext{MPa}}{2}$

14) Yield Strength of Steel given Total Horizontal Shear to be Resisted by Shear Connectors

Open Calculator 🗗

 $\mathbf{ex} = \frac{2 \cdot 4207.5 \mathrm{kN}}{33660 \mathrm{mm}^2}$

Variables Used

- A_C Actual Area of Effective Concrete Flange (Square Millimeter)
- As Area of Steel Beam (Square Millimeter)
- Asr Area of Longitudinal Reinforcement (Square Millimeter)
- f_C 28-Day Compressive Strength of Concrete (Megapascal)
- F_v Yield Stress of Steel (Megapascal)
- F_{Vr} Specified Minimum Yield Stress (Megapascal)
- **M** Moment at Concentrated Load (Kilonewton Meter)
- M_{max} Maximum Moment in Span (Kilonewton Meter)
- N Number of Shear Connectors
- N₁ No. of Shear Connectors Required
- q Allowable Shear for One Connector (Newton)
- V_h Total Horizontal Shear (Kilonewton)
- β Beta

Constants, Functions, Measurements used

- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N) Force Unit Conversion
- Measurement: Torque in Kilonewton Meter (kN*m)
 Torque Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m)
 Moment of Force Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Check other formula lists

- Allowable-Stress Design Formulas (
- Base and Bearing Plates Formulas [7]
- Bearing, Stresses, Plate Girders & Number of Connectors Required **Ponding Considerations** Formulas
- Cold Formed or Light Weighted Steel Structures Formulas
- Composite Construction in **Buildings Formulas**

- Design of Stiffeners under Loads Formulas
- Economical Structural Steel Formulas (
- for Building Construction Formulas 4
- **Webs under Concentrated Loads** Formulas C

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

3/28/2024 | 9:03:56 AM UTC

Please leave your feedback here...

