

Energy Flux Method Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

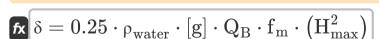
Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

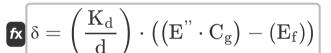
Feel free to SHARE this document with your friends!

Please leave your feedback here...



List of 13 Energy Flux Method Formulas

Energy Flux Method


1) Energy Dissipation Rate by Battjes and Janssen

Open Calculator 🗗

$$ext{ex} \ 19221.03 = 0.25 \cdot 1000 ext{kg/m}^3 \cdot ext{[g]} \cdot 2 \cdot 8 ext{Hz} \cdot \left((0.7 ext{m})^2
ight)$$

2) Energy Dissipation Rate per unit Surface Area due to Wave Breaking

Open Calculator 🗗

ex
$$18376.33 = \left(\frac{10.15}{1.05 \mathrm{m}}\right) \cdot \left((20.00 \mathrm{J/m^2 \cdot 100 m/s}) - (99.00)\right)$$

3) Energy Flux associated with Stable Wave Height

$$\mathbf{E}_{\mathrm{f'}} = \mathrm{E}^{"} \cdot \mathrm{C}_{\mathrm{g}}$$

Open Calculator

 $ext{ex} \ 2000 = 20.00 ext{J/m}^2 \cdot 100 ext{m/s}$

4) Maximum Wave Height given Energy Dissipation Rate

 $\mathbf{H}_{\mathrm{max}} = \sqrt{rac{\delta}{0.25 \cdot
ho_{\mathrm{water}} \cdot [\mathrm{g}] \cdot \mathrm{Q_B} \cdot \mathrm{f_m}}}$

Open Calculator

 $ext{ex} 0.699999 ext{m} = \sqrt{rac{19221}{0.25 \cdot 1000 ext{kg/m}^3 \cdot [ext{g}] \cdot 2 \cdot 8 ext{Hz}}}$

5) Maximum Wave Height using Miche Criterion

 $\mathbf{K} \mathbf{H}_{\mathrm{max}} = 0.14 \cdot \lambda \cdot \mathrm{tanh}(\mathbf{d} \cdot \mathbf{k})$

Open Calculator

 $= 0.776538 \text{m} = 0.14 \cdot 26.8 \text{m} \cdot \tanh(1.05 \text{m} \cdot 0.2)$

6) Mean Wave Frequency given Energy Dissipation Rate

 $\mathbf{f}_{\mathrm{m}} = rac{\delta}{0.25 \cdot
ho_{\mathrm{water}} \cdot [\mathrm{g}] \cdot \mathrm{Q}_{\mathrm{B}} \cdot \mathrm{H}_{\mathrm{max}}^2}$

Open Calculator 🔄

7) Percentage of Waves Breaking given Energy Dissipation Rate

 $\left| \mathbf{Q}_{\mathrm{B}}
ight| = rac{\delta}{0.25 \cdot
ho_{\mathrm{water}} \cdot \left[\mathrm{g}
ight] \cdot \mathrm{f}_{\mathrm{m}} \cdot \left(\mathrm{H}_{\mathrm{max}}^2
ight)}$

Open Calculator 🗗

ex $1.999996 = \frac{19221}{0.25 \cdot 1000 \mathrm{kg/m^3 \cdot [g] \cdot 8Hz \cdot \left(\left(0.7 \mathrm{m} \right)^2 \right)}$

8) Stable Wave Height

fx $m H_{stable} = 0.4 \cdot d$

Open Calculator 🗗

 $oxed{ex} 0.42 \mathrm{m} = 0.4 \cdot 1.05 \mathrm{m}$

9) Water Depth given Energy Dissipation Rate per unit Surface Area due to Wave Breaking

 $extbf{d} = ext{K}_{ ext{d}} \cdot rac{ ext{E}^{"} \cdot ext{C}_{ ext{g}} - (ext{E}_{ ext{f}})}{\delta}$

Open Calculator

 $ext{ex} 1.003858 ext{m} = 10.15 \cdot rac{20.00 ext{J/m}^2 \cdot 100 ext{m/s} - (99.00)}{19221}$

10) Water Depth given Maximum Wave Height by Miche Criterion

 $\mathrm{d} = \left(rac{a anh\left(rac{H_{\mathrm{max}}}{0.14\cdot\lambda}
ight)}{\mathrm{k}}
ight)$

Open Calculator 🚰

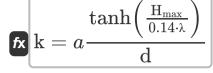
 $oxed{ex} 0.943891 \mathrm{m} = \left(rac{a anh \left(rac{0.7 \mathrm{m}}{0.14 \cdot 26.8 \mathrm{m}}
ight)}{0.2}
ight)$

11) Water Depth given Stable Wave Height

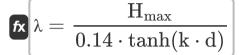
 $\int \!\! \mathrm{d} = rac{\mathrm{H_{stable}}}{0.4}$

Open Calculator

ex 1.05m $= \frac{0.42$ m}{0.4}



12) Wave Number given Maximum Wave Height by Miche Criterion 🗗



Open Calculator

$$oxed{ex} 0.179789 = a rac{ anh \left(rac{0.7 ext{m}}{0.14 \cdot 26.8 ext{m}}
ight)}{1.05 ext{m}}$$

13) Wavelength given Maximum Wave Height by Miche Criterion 🗲

ex
$$24.1585$$
m = $\frac{0.7$ m $0.14 \cdot \tanh(0.2 \cdot 1.05$ m)

Variables Used

- C_g Wave Group Speed (Meter per Second)
- **d** Water Depth (Meter)
- Ef Energy Flux associated with Stable Wave Height
- Ef Energy Flux
- E" Wave Energy (Joule per Square Meter)
- **f**_m Mean Wave Frequency (Hertz)
- H_{max} Maximum Wave Height (Meter)
- H_{stable} Stable Wave Height (Meter)
- k Wave Number for Waves in Coast
- K_d Decay Coefficient
- Q_B Percentage of Waves Breaking
- δ Energy Dissipation Rate per unit Surface Area
- λ Wavelength of Coast (Meter)
- Pwater Water Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665
 Gravitational acceleration on Earth
- Function: atanh, atanh(Number)

 The inverse hyperbolic tangent function returns the value whose hyperbolic tangent is a number.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tanh, tanh(Number)

 The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Heat Density in Joule per Square Meter (J/m²)
 Heat Density Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion

Check other formula lists

- Breaker Index Formulas
- Energy Flux Method Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

4/11/2024 | 9:42:37 AM UTC

Please leave your feedback here...

