



# **Important Formulas of Piston**

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





## **List of 18 Important Formulas of Piston**

# Important Formulas of Piston 🗗

1) Inner Diameter of Piston Pin

Open Calculator 🚰

$$= 33.3 \mathrm{mm} = 0.6 \cdot 55.5 \mathrm{mm}$$

2) Length of Piston Pin used in Connecting Rod

fx 
$$l_1 = 0.45 \cdot D_i$$

fx  $d_{
m i} = 0.6 \cdot d_{
m o}$ 

Open Calculator 🗹

$$\texttt{ex} 81 \text{mm} = 0.45 \cdot 180 \text{mm}$$

3) Length of Piston Skirt given Allowable Bearing Pressure

$$\mathbf{f}_{\mathbf{k}} egin{aligned} \mathbf{l}_{\mathrm{s}} &= \mathbf{\mu} \cdot \mathbf{\pi} \cdot \mathrm{D_{i}} \cdot rac{\mathrm{p}_{\mathrm{max}}}{4 \cdot \mathrm{P_{b}}} \end{aligned}$$

Open Calculator 🖒

$$ext{ex} 50.60791 ext{mm} = 0.1 \cdot \pi \cdot 180 ext{mm} \cdot rac{1.43191084 ext{N/mm}^2}{4 \cdot 0.4 ext{N/mm}^2}$$

### 4) Maximum Bending Moment on Piston Pin



Open Calculator

$$= 144 \text{kN} \cdot \frac{180 \text{mm}}{8}$$



#### 5) Maximum Bending Stress in Piston Pin

 $\sigma_{
m max} = 4 \cdot {
m F_P} \cdot {
m D_i} \cdot rac{{
m d_o}}{\pi \cdot \left({
m d_o^4 - d_i^4}
ight)}$ 

Open Calculator 🗗

ex

 $221.3985 \mathrm{N/mm^2} = 4 \cdot 144 \mathrm{kN} \cdot 180 \mathrm{mm} \cdot rac{55.5 \mathrm{mm}}{\pi \cdot \left( \left( 55.5 \mathrm{mm} 
ight)^4 - \left( 33.2 \mathrm{mm} 
ight)^4 
ight)}$ 

# 6) Maximum Gap between Free Ends of Ring after Assembly

fx  $G = 0.004 \cdot D_i$ 

Open Calculator 🚰

 $\mathbf{ex} \ 0.72 \mathrm{mm} = 0.004 \cdot 180 \mathrm{mm}$ 

#### 7) Maximum Gap between Free Ends of Ring before Assembly

 $21.36 \text{mm} = 4 \cdot 5.34 \text{mm}$ 

fx  $G = 4 \cdot b$ 

Open Calculator 🚰

# 8) Maximum Gas Force on Piston Head



Open Calculator

=  $36.43769 \mathrm{kN} = \pi \cdot (180 \mathrm{mm})^2 \cdot rac{1.43191084 \mathrm{N/mm^2}}{4}$ 

### 9) Maximum Length of Piston Skirt 🛂

fx  $m l_s = 0.8 \cdot D_i$ 

Open Calculator 🗗

**ex**  $144 \text{mm} = 0.8 \cdot 180 \text{mm}$ 

#### 10) Minimum Length of Piston Skirt 🔽

fx  $m l_s = 0.65 \cdot D_i$ 

Open Calculator

 $= 117 \text{mm} = 0.65 \cdot 180 \text{mm}$ 

#### 11) Number of Piston Rings

 $\mathbf{z} = rac{\mathrm{D_i}}{10 \cdot \mathrm{h_{min}}}$ 

Open Calculator 🗗

 $= 3.991131 = \frac{180 \text{mm}}{10 \cdot 4.51 \text{mm}}$ 

### 12) Outer Diameter of Piston Pin 🛂

 $\mathbf{f}$   $\mathbf{d}_{\mathrm{o}} = \pi \cdot \mathrm{D_{i}^{2}} \cdot rac{\mathrm{p_{max}}}{4 \cdot (\mathrm{p_{h}c}) \cdot \mathrm{l_{1}}}$ 

Open Calculator

 $\mathbf{ex} \left[ 59.26852 \mathrm{mm} = \pi \cdot (180 \mathrm{mm})^2 \cdot rac{1.43191084 \mathrm{N/mm^2}}{4 \cdot 7.59 \mathrm{N/mm^2} \cdot 81 \mathrm{mm}} 
ight]$ 



### 13) Permissible Bending Stress for Piston

 $\sigma_{
m ph} = rac{{
m P}_0}{{
m f}_{
m s}}$ 

Open Calculator

=  $30.66667 \mathrm{N/mm^2} = \frac{92 \mathrm{N/mm^2}}{3}$ 

#### 14) Radial Width of Piston Ring

 $b = D_i \cdot \sqrt{3 \cdot rac{p_w}{\sigma_{tp}}}$ 

ex  $5.346797 \mathrm{mm} = 180 \mathrm{mm} \cdot \sqrt{3 \cdot \frac{0.025 \mathrm{N/mm^2}}{85 \mathrm{N/mm^2}}}$ 

### 15) Radius of Piston Cup

 $m R = 0.7 \cdot D_i$ 

Open Calculator 🚰

Open Calculator G

 $\boxed{126\text{mm} = 0.7 \cdot 180\text{mm}}$ 

### 16) Side Thrust on Piston

 $\mathbf{F}_{\mathrm{a}} = \mathbf{\mu} \cdot \mathbf{\pi} \cdot \mathrm{D}_{\mathrm{i}}^2 \cdot rac{\mathrm{p}_{\mathrm{max}}}{\mathbf{\Lambda}}$ 

Open Calculator

=  $3.643769 \mathrm{kN} = 0.1 \cdot \pi \cdot \left(180 \mathrm{mm}\right)^2 \cdot rac{1.43191084 \mathrm{N/mm^2}}{4}$ 





#### 17) Thickness of Piston Head According to Grashoff's Formula 🖸



Open Calculator

$$ag{t_h} = D_i \cdot \sqrt{3 \cdot rac{p_{max}}{16 \cdot \sigma_{ph}}}$$

$$ext{ex} \ 16.84399 ext{mm} = 180 ext{mm} \cdot \sqrt{3 \cdot rac{1.43191084 ext{N/mm}^2}{16 \cdot 30.66 ext{N/mm}^2}}$$

### 18) Thickness of Piston Head given Cylinder Inner Diameter 🚰



Open Calculator 2

$$= 7.26 \text{mm} = 0.032 \cdot 180 \text{mm} + 1.5$$

fx  $t_{
m h}=0.032\cdot {
m D_i}+1.5$ 



#### Variables Used

- **b** Radial Width of Piston Ring (Millimeter)
- **d**<sub>i</sub> Inner Diameter of Piston Pin (Millimeter)
- **D**<sub>i</sub> Diameter of Cylinder Bore (Millimeter)
- do Outer Diameter of Piston Pin (Millimeter)
- Fa Side Thrust on Piston (Kilonewton)
- **F**<sub>P</sub> Force Exerted on Piston (Kilonewton)
- **f**<sub>S</sub> Factor of Safety of Engine Piston
- G Gap between Free Ends of Piston Ring (Millimeter)
- h<sub>min</sub> Minimum Axial Thickness of Piston Ring (Millimeter)
- I<sub>1</sub> Length of Piston Pin in Connecting Rod (Millimeter)
- Is Length of Piston Skirt (Millimeter)
- Mb Bending Moment (Newton Meter)
- P<sub>0</sub> Ultimate Tensile Strength of Piston (Newton per Square Millimeter)
- P<sub>b</sub> Bearing Pressure for Piston Skirt (Newton per Square Millimeter)
- **p**<sub>b</sub>**c** Bearing Pressure of CrankPin Bush (Newton per Square Millimeter)
- p<sub>max</sub> Maximum Gas Pressure Inside Cylinder (Newton per Square Millimeter)
- p<sub>w</sub> Allowable Radial Pressure on Piston Ring (Newton per Square Millimeter)
- R Radius of Piston Cup (Millimeter)
- t<sub>h</sub> Thickness of Piston Head (Millimeter)
- Z Number of Piston Rings





- µ Coefficient of Friction for Piston Skirt
- σ<sub>max</sub> Maximum Bending Stress in Piston Pin (Newton per Square Millimeter)
- σ<sub>ph</sub> Bending Stress in Piston Head (Newton per Square Millimeter)
- $\sigma_{tp}$  Permissible Tensile Stress for Ring (Newton per Square Millimeter)





### Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
   Archimedes' constant
- Function: sqrt, sqrt(Number)

  A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
  Length Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²)
   Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN)
   Force Unit Conversion
- Measurement: Torque in Newton Meter (N\*m)
   Torque Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
   Stress Unit Conversion





#### **Check other formula lists**

Feel free to SHARE this document with your friends!

#### PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/15/2024 | 8:56:57 AM UTC

Please leave your feedback here...



