



1/10

### Important Formulas of Oxygen Requirement of the Aeration Tank

Calculators!

Examples!

Conversions!

#### Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...





## List of 19 Important Formulas of Oxygen Requirement of the Aeration Tank

## Important Formulas of Oxygen Requirement of the Aeration Tank 🕑





2/10

#### 5) Correction Factor given Oxygen Transfer Capacity 🖒

$$\begin{array}{l} \textbf{(s) contection ratio given oxygen transfer capacity (c) } \\ \textbf{(c)} & C_{f} = \frac{N}{\frac{N^{*}(D^{S}-D^{L})\cdot(1.024)^{T-20}}{9.17}} \\ \textbf{(c)} & \textbf{(c)} \\ \textbf{(c)} \\$$







fx 
$$\mathbf{Q}_{i} = \mathbf{Q}_{ub} + \left(rac{\left(rac{\mathrm{BOD5}}{\mathrm{BOD}^{u}}
ight) \cdot \left(\mathbf{O}_{2} + \left(1.42 \cdot \mathbf{Q}_{w} \cdot \mathbf{X}^{\mathrm{R}}
ight)
ight)}{\mathbf{Q}_{\mathrm{s}}}
ight)$$

Open Calculator

$$\boxed{13.19425 \text{mg/L} = 11.91 \text{mg/L} + \left(\frac{\left(\frac{1.36 \text{mg/L}}{2 \text{mg/L}}\right) \cdot \left(2.5 \text{mg/d} + (1.42 \cdot 9.5 \text{m}^3/\text{s} \cdot 1.4 \text{mg/L})\right)}{10 \text{m}^3/\text{s}}\right)}$$

$$\begin{array}{l} \text{Open Calculator } \hline \textbf{K} \\ \textbf{X}^{R} = \frac{\left(\frac{Q_{s} \cdot (Q_{i} - Q_{o})}{f}\right) - O_{2}}{1.42 \cdot Q_{w}} \\ \text{ex} \\ 0.929083 \text{mg/L} = \frac{\left(\frac{10\text{m}^{i}/\text{s} \cdot (13.2 \text{mg/L} - 9.44 \text{mg/L})}{3.0}\right) - 2.5 \text{mg/d}}{1.42 \cdot 9.5 \text{m}^{3}/\text{s}} \\ \text{10) Operation Dissolved Oxygen Level } \hline \textbf{K} \\ \hline \textbf{D}^{L} = D^{S} - \left(\frac{N \cdot 9.17}{N^{s} \cdot \text{C}_{f} \cdot (1.024)^{T-20}}\right) \\ \text{ex} \\ 1.672723 \text{mg/L} = 5803 \text{mg/L} - \left(\frac{3 \text{kg/h/kW} \cdot 9.17}{2.03 \text{kg/h/kW} \cdot 0.5 \cdot (1.024)^{85\text{K} - 20}}\right) \\ \text{11) Oxygen Required in Aeration Tank } \hline \textbf{K} \\ \hline \textbf{Q}_{0} = \left(\frac{Q_{s} \cdot (Q_{i} - Q)}{2.03 \text{kg/h/kW} \cdot 0.5 \cdot (1.024)^{85\text{K} - 20}}\right) \\ \end{array}$$

$$\mathbf{ex} \ 0.023781 \text{mg/d} = \left(\frac{10 \text{m}^3/\text{s} \cdot (13.2 \text{mg/L} - 0.4 \text{mg/L})}{3.0}\right) - (1.42 \cdot 9.5 \text{m}^3/\text{s} \cdot 1.4 \text{mg/L})$$





12) Oxygen Required in Aeration Tank given Oxygen Demand and Ultimate BOD 🕑





5/10

6/10

Open Calculator

16) Sewage Discharge given Oxygen Required in Aeration Tank 🕑

$$egin{aligned} \mathbf{\hat{R}} & \mathbf{Q}_{\mathrm{oxy}} = \left( rac{\mathbf{f} \cdot \left( \mathbf{O}_2 + \left( 1.42 \cdot \mathbf{Q}_{\mathrm{w}} \cdot \mathbf{X}^{\mathrm{R}} 
ight) 
ight)}{\mathbf{Q}_{\mathrm{i}} - \mathbf{Q}} 
ight) \end{aligned}$$

$$\underbrace{ 4.426406 m^3/s = \left( \frac{3.0 \cdot (2.5 mg/d + (1.42 \cdot 9.5 m^3/s \cdot 1.4 mg/L))}{13.2 mg/L - 0.4 mg/L} \right) }_{ \ \ 13.2 mg/L - 0.4 mg/L}$$

#### 17) Ultimate Biochemical Oxygen Demand

fx 
$$\mathrm{BOD^u}=rac{\mathrm{BOD5}}{0.68}$$
 ex  $\mathrm{2mg/L}=rac{\mathrm{1.36mg/L}}{0.68}$ 

#### 18) Ultimate BOD given Ratio of BOD to Ultimate BOD 🚰

$$\mathbf{f} \mathbf{BOD}_{u} = \frac{BOD5}{f}$$

ex 
$$0.453333 \mathrm{mg/L} = rac{1.36 \mathrm{mg/L}}{3.0}$$

#### 19) Volume of Wasted Sludge Per Day given Oxygen Required in Aeration Tank

$$f_{X} Q_{w'} = \frac{\left(\frac{Q_{s} \cdot (Q_{i} - Q)}{f}\right) - O_{2}}{1.42 \cdot X}$$

$$e_{X} 0.025039 \text{m}^{3}/\text{s} = \frac{\left(\frac{10 \text{m}^{3}/\text{s} \cdot (13.2 \text{mg/L} - 0.4 \text{mg/L})}{3.0}\right) - 2.5 \text{mg/d}}{1.42 \cdot 1200 \text{mg/L}}$$





Open Calculator 🗗

Open Calculator

#### Variables Used

- BOD<sub>5</sub> BOD of 5 days at 20° C (Milligram per Liter)
- BOD<sub>5a</sub> BOD5 given Oxygen Required in Aeration Tank (Milligram per Liter)
- BOD<sub>5r</sub> BOD5 given Ratio of BOD to Ultimate BOD (Milligram per Liter)
- BOD<sub>u</sub> Ultimate BOD given Ratio of BOD to Ultimate BOD (Milligram per Liter)
- BOD<sup>u</sup> Ultimate BOD (Milligram per Liter)
- BOD5 5 Days BOD (Milligram per Liter)
- C<sub>f</sub> Correction Factor
- D Difference between Saturation DO and Operation DO (Milligram per Liter)
- **D<sup>L</sup>** Operation Dissolved Oxygen (Milligram per Liter)
- D<sup>O2</sup> Oxygen Demand of Biomass
- D<sup>S</sup> Dissolved Oxygen Saturation (Milligram per Liter)
- **f** Ratio of BOD to Ultimate BOD
- N Oxygen Transferred (Kilogram per Hour per Kilowatt)
- N<sup>S</sup> Oxygen Transfer Capacity (Kilogram per Hour per Kilowatt)
- **O<sub>2</sub>** Theoretical Oxygen Requirement (Milligram per Day)
- **O**<sub>a</sub> Oxygen Required in Aeration Tank (Milligram per Day)
- **O**<sub>r</sub> Oxygen Required (Milligram per Day)
- Q Effluent BOD (Milligram per Liter)
- **Q<sub>i</sub> Influent BOD** (Milligram per Liter)
- **Q**<sub>o</sub> Effluent BOD given Oxygen Required (Milligram per Liter)
- Qoxy Sewage Discharge given Oxygen Required (Cubic Meter per Second)
- **Q**<sub>s</sub> Sewage Discharge (Cubic Meter per Second)
- **Q**<sub>ub</sub> Effluent BOD given Ultimate BOD (*Milligram per Liter*)
- Q<sub>w</sub> Volume of Wasted Sludge per day (Cubic Meter per Second)
- Q<sub>w</sub> Volume of Wasted Sludge (Cubic Meter per Second)
- SF Sewage Flowrate (Cubic Meter per Second)
- **T** Temperature (Kelvin)



- X MLSS (Milligram per Liter)
- X<sup>R</sup> MLSS in Returned or Wasted Sludge (*Milligram per Liter*)





#### **Constants, Functions, Measurements used**

- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m<sup>3</sup>/s) Volumetric Flow Rate Unit Conversion
- Measurement: Mass Flow Rate in Milligram per Day (mg/d) Mass Flow Rate Unit Conversion
- Measurement: Density in Milligram per Liter (mg/L) Density Unit Conversion
- Measurement: Specific Fuel Consumption in Kilogram per Hour per Kilowatt (kg/h/kW) Specific Fuel Consumption Unit Conversion





# Check other formula lists Design of Continuous Flow Type of Sedimentation Tank Formulas Efficiency of High Rate Filters Formulas Food is to Microorganism Ratio or F is to M Ratio Formulas Feel free to SHARE this document with your friends!

#### **PDF Available in**

English Spanish French German Russian Italian Portuguese Polish Dutch

9/19/2024 | 9:59:07 AM UTC

Please leave your feedback here...

10/10