

Darcy Weisbach Equation Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 26 Darcy Weisbach Equation Formulas

Darcy Weisbach Equation **2**

1) Area of Pipe given Total Required Power

$$\mathbf{K} = rac{P}{\mathrm{L_p \cdot dp} |\mathrm{dr \cdot V_{mean}}|}$$

Open Calculator

$$2 {
m m}^2 = rac{34.34 {
m W}}{0.10 {
m m} \cdot 17 {
m N/m}^3 \cdot 10.1 {
m m/s}}$$

2) Density of Fluid given Friction Factor

$$\boxed{ \rho_{Fluid} = \mu \cdot \frac{64}{f \cdot D_{pipe} \cdot V_{mean} } }$$

Open Calculator

$$ext{ex} \ 1.279875 ext{kg/m}^{_3} = 10.2 ext{P} \cdot rac{64}{5 \cdot 1.01 ext{m} \cdot 10.1 ext{m/s}}$$

3) Density of Liquid given Shear Stress and Darcy Friction Factor

$$ho_{
m Fluid} = 8 \cdot rac{ au}{{
m f} \cdot {
m V}_{
m mean} \cdot {
m V}_{
m mean}}$$

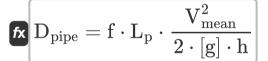
$$ext{ex} 1.460249 ext{kg/m}^{_3} = 8 \cdot rac{93.1 ext{Pa}}{5 \cdot 10.1 ext{m/s} \cdot 10.1 ext{m/s}}$$

4) Density of Liquid using Mean Velocity given Shear Stress with Friction Factor

 $ho_{
m Fluid} = 8 \cdot rac{ au}{{
m f} \cdot \left({
m V}_{
m mean}^2
ight)}$

Open Calculator 🗗

ex $1.460249 ext{kg/m}^3 = 8 \cdot rac{93.1 ext{Pa}}{5 \cdot \left((10.1 ext{m/s})^2
ight)}$


5) Diameter of Pipe given Friction Factor

 $extbf{D}_{ ext{pipe}} = rac{64 \cdot \mu}{ ext{f} \cdot ext{V}_{ ext{mean}} \cdot
ho_{ ext{Fluid}}}$

Open Calculator

ex $1.055243 \mathrm{m} = rac{64 \cdot 10.2 \mathrm{P}}{5 \cdot 10.1 \mathrm{m/s} \cdot 1.225 \mathrm{kg/m^3}}$

6) Diameter of Pipe given Head Loss due to Frictional Resistance

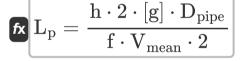
Open Calculator

 $oxed{ex} 1.040213 \mathrm{m} = 5 \cdot 0.10 \mathrm{m} \cdot rac{(10.1 \mathrm{m/s})^2}{2 \cdot [\mathrm{g}] \cdot 2.5 \mathrm{m}}$

7) Dynamic Viscosity given Friction Factor

$$\mu = rac{\mathbf{f} \cdot \mathbf{V}_{\mathrm{mean}} \cdot \mathbf{D}_{\mathrm{pipe}} \cdot \mathbf{
ho}_{\mathrm{Fluid}}}{64}$$

Open Calculator 🗗


8) Head Loss due to Frictional Resistance

$$\mathbf{h} = \mathbf{f} \cdot \mathbf{L}_{\mathrm{p}} \cdot rac{V_{\mathrm{mean}}^2}{2 \cdot [\mathrm{g}] \cdot \mathrm{D}_{\mathrm{pipe}}}$$

Open Calculator

 $\mathbf{ex} \ 2.574783 \mathrm{m} = 5 \cdot 0.10 \mathrm{m} \cdot rac{(10.1 \mathrm{m/s})^2}{2 \cdot [\mathrm{g}] \cdot 1.01 \mathrm{m}}$

9) Length of Pipe given Head Loss due to Frictional Resistance

Open Calculator 🗗

10) Pressure Gradient given Total Required Power

$$|\mathbf{d}\mathbf{p}| \mathrm{d}\mathbf{r} = rac{P}{\mathrm{L_p \cdot A \cdot V_{mean}}}$$

Open Calculator

 $ext{ex} 17 ext{N/m}^{_3} = rac{34.34 ext{W}}{0.10 ext{m} \cdot 2 ext{m}^2 \cdot 10.1 ext{m/s}}$

© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!

11) Reynolds Number given Friction Factor 🚰

 $\operatorname{Re} = \frac{64}{f}$

Open Calculator 🖸

 $12.8 = \frac{64}{5}$

12) Shear Stress given Friction Factor and Density

 $au =
ho_{ ext{Fluid}} \cdot ext{f} \cdot ext{V}_{ ext{mean}} \cdot rac{ ext{V}_{ ext{mean}}}{ ext{8}}$

Open Calculator

 $ext{ex} 78.10141 ext{Pa} = 1.225 ext{kg/m}^3 \cdot 5 \cdot 10.1 ext{m/s} \cdot rac{10.1 ext{m/s}}{8}$

13) Shear Velocity

 $V_{
m shear} = V_{
m mean} \cdot \sqrt{rac{f}{8}}$ ex $7.984751
m m/s = 10.1
m m/s \cdot \sqrt{rac{5}{8}}$

Open Calculator 🖸

14) Total Required Power

fx
$$P = dp | dr \cdot A \cdot V_{mean} \cdot L_p |$$

 $\mathbf{ex} \ 34.34 \mathrm{W} = 17 \mathrm{N/m^3 \cdot 2m^2 \cdot 10.1m/s \cdot 0.10m}$

Friction Factor

15) Friction Factor

$$f$$
 $f = 64 \cdot rac{\mu}{
ho_{Fluid} \cdot V_{mean} \cdot D_{pipe}}$

Open Calculator 🗗

 $= 5.223978 = 64 \cdot rac{10.2 ext{P}}{1.225 ext{kg/m}^3 \cdot 10.1 ext{m/s} \cdot 1.01 ext{m}}$

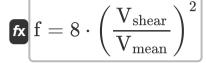
16) Friction Factor given Reynolds Number

 \mathbf{f} $\mathbf{f} = \frac{64}{\mathrm{Re}}$

Open Calculator

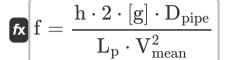
 $= \frac{5}{12.8}$

17) Friction Factor given Shear Stress and Density


 $au = rac{8 \cdot au}{
m V_{mean} \cdot
m V_{mean} \cdot
ho_{Fluid}}$

Open Calculator

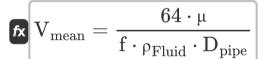
 $= 1.9602 = rac{8 \cdot 93.1 \mathrm{Pa}}{10.1 \mathrm{m/s} \cdot 10.1 \mathrm{m/s} \cdot 1.225 \mathrm{kg/m^3}}$


18) Friction Factor given Shear Velocity 🚰

Open Calculator 🗗

ex
$$6.352318 = 8 \cdot \left(\frac{9 \text{m/s}}{10.1 \text{m/s}} \right)^2$$

19) Friction Factor when Head Loss is due to Frictional Resistance



Open Calculator

$$= \boxed{ 4.854777 = \frac{2.5 \mathrm{m} \cdot 2 \cdot \mathrm{[g]} \cdot 1.01 \mathrm{m}}{0.10 \mathrm{m} \cdot \left(10.1 \mathrm{m/s}\right)^2} }$$

Mean Velocity of Flow

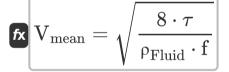
20) Mean Velocity of Flow given Friction Factor

$$ext{ex} 10.55243 ext{m/s} = rac{64 \cdot 10.2 ext{P}}{5 \cdot 1.225 ext{kg/m}^3 \cdot 1.01 ext{m}}$$

21) Mean Velocity of Flow given Head Loss due to Frictional Resistance 🖒

 $V_{mean} = \sqrt{rac{ \mathbf{h} \cdot 2 \cdot [\mathbf{g}] \cdot \mathbf{D}_{pipe}}{\mathbf{f} \cdot \mathbf{L}_{p}}}$

Open Calculator 🗗


22) Mean Velocity of Flow given Maximum Velocity at Axis of Cylindrical Element

fx $V_{mean} = 0.5 \cdot V_{max}$

Open Calculator

 $\textbf{ex} \ 10.1 \text{m/s} = 0.5 \cdot 20.2 \text{m/s}$

23) Mean Velocity of Flow given Shear Stress and Density

ex
$$11.02724 \mathrm{m/s} = \sqrt{\frac{8 \cdot 93.1 \mathrm{Pa}}{1.225 \mathrm{kg/m^3 \cdot 5}}}$$

24) Mean Velocity of Flow given Shear Velocity

 $ag{V_{
m mean}} = rac{{
m V_{
m shear}}}{\sqrt{rac{{
m f}}{8}}}$

Open Calculator

ex $11.3842 ext{m/s} = rac{9 ext{m/s}}{\sqrt{rac{5}{8}}}$

25) Mean Velocity of Flow given Total Required Power

 $extbf{K} V_{ ext{mean}} = rac{ ext{P}}{ ext{L}_{ ext{p}} \cdot ext{dp} | ext{dr} \cdot ext{A}}$

Open Calculator

ex $10.1 \mathrm{m/s} = rac{34.34 \mathrm{W}}{0.10 \mathrm{m} \cdot 17 \mathrm{N/m^3} \cdot 2 \mathrm{m^2}}$

26) Mean Velocity of Fluid Flow

 $\mathbf{K} V_{\mathrm{mean}} = \left(rac{1}{8 \cdot \mu}
ight) \cdot \mathrm{d}p |\mathrm{d}r \cdot R^2|$

Open Calculator 🗗

 $oxed{ex} 8.333333 {
m m/s} = \left(rac{1}{8 \cdot 10.2 {
m P}}
ight) \cdot 17 {
m N/m^3} \cdot {
m (2m)}^2$

Variables Used

- A Cross Sectional Area of Pipe (Square Meter)
- Dpipe Diameter of Pipe (Meter)
- dp|dr Pressure Gradient (Newton per Cubic Meter)
- f Darcy Friction Factor
- **h** Head Loss due to Friction (Meter)
- L_p Length of Pipe (Meter)
- P Power (Watt)
- R Radius of pipe (Meter)
- Re Reynolds Number
- V_{max} Maximum Velocity (Meter per Second)
- V_{mean} Mean Velocity (Meter per Second)
- V_{shear} Shear Velocity (Meter per Second)
- µ Dynamic Viscosity (Poise)
- ρ_{Fluid} Density of Fluid (Kilogram per Cubic Meter)
- τ Shear Stress (Pascal)

Constants, Functions, Measurements used

- Constant: [g], 9.80665

 Gravitational acceleration on Farth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion
- Measurement: Pressure Gradient in Newton per Cubic Meter (N/m³)
 Pressure Gradient Unit Conversion
- Measurement: Stress in Pascal (Pa)
 Stress Unit Conversion

Check other formula lists

Darcy Weisbach Equation
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 6:05:54 AM UTC

Please leave your feedback here...

