
calculatoratoz.com

unitsconverters.com

Shear Stress in Circular Section Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Shear Stress in Circular Section Formulas

Shear Stress in Circular Section

1) Shear Force in Circular Section
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{F}}=\frac{\tau_{\text {beam }} \cdot \mathrm{I} \cdot \mathrm{B}}{\frac{2}{3} \cdot\left(\mathrm{R}^{2}-\mathrm{y}^{2}\right)^{\frac{3}{2}}}$

$$
\text { ex } 0.875023 \mathrm{kN}=\frac{6 \mathrm{MPa} \cdot 0.00168 \mathrm{~m}^{4} \cdot 100 \mathrm{~mm}}{\frac{2}{3} \cdot\left((1200 \mathrm{~mm})^{2}-(5 \mathrm{~mm})^{2}\right)^{\frac{3}{2}}}
$$

2) Shear Force using Maximum Shear Stress \qquad
$f \mathrm{fx} \mathrm{F}_{\mathrm{s}}=\frac{3 \cdot \mathrm{I} \cdot \tau_{\max }}{\mathrm{R}^{2}}$
ex $38.5 \mathrm{kN}=\frac{3 \cdot 0.00168 \mathrm{~m}^{4} \cdot 11 \mathrm{MPa}}{(1200 \mathrm{~mm})^{2}}$
3) Shear Stress Distribution for Circular Section
$\mathrm{fx} \tau_{\max }=\frac{\mathrm{F}_{\mathrm{s}} \cdot \frac{2}{3} \cdot\left(\mathrm{R}^{2}-\mathrm{y}^{2}\right)^{2}}{\mathrm{I} \cdot \mathrm{B}}$

$$
4.8 \mathrm{kN} \cdot \frac{2}{3} \cdot\left((1200 \mathrm{~mm})^{2}-(5 \mathrm{~mm})^{2}\right)^{\frac{3}{2}}
$$

$$
0.00168 \mathrm{~m}^{4} \cdot 100 \mathrm{~mm}
$$

Open Calculator
4) Width of Beam at Considered Level given Radius of Circular Section
$f \mathrm{fx}=2 \cdot \sqrt{R^{2}-y^{2}}$

Open Calculator
ex $2399.979 \mathrm{~mm}=2 \cdot \sqrt{(1200 \mathrm{~mm})^{2}-(5 \mathrm{~mm})^{2}}$
5) Width of Beam at Considered Level given Shear Stress for Circular Section
$\mathrm{fx} \mathrm{B}=\frac{\mathrm{F}_{\mathrm{s}} \cdot \frac{2}{3} \cdot\left(\mathrm{R}^{2}-\mathrm{y}^{2}\right)^{\frac{3}{2}}}{\mathrm{I} \cdot \tau_{\text {beam }}}$
Open Calculator
ex $548.5571 \mathrm{~mm}=\frac{4.8 \mathrm{kN} \cdot \frac{2}{3} \cdot\left((1200 \mathrm{~mm})^{2}-(5 \mathrm{~mm})^{2}\right)^{\frac{3}{2}}}{0.00168 \mathrm{~m}^{4} \cdot 6 \mathrm{MPa}}$

Average Shear Stress 전

6) Average Shear Force for Circular Section
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\mathrm{s}}=\pi \cdot \mathrm{R}^{2} \cdot \tau_{\mathrm{avg}}$
Open Calculator
ex $226.1947 \mathrm{kN}=\pi \cdot(1200 \mathrm{~mm})^{2} \cdot 0.05 \mathrm{MPa}$
7) Average Shear Stress for Circular Section
$\mathrm{fx} \tau_{\text {avg }}=\frac{\mathrm{F}_{\mathrm{s}}}{\pi \cdot \mathrm{R}^{2}}$
Open Calculator ©
ex $0.001061 \mathrm{MPa}=\frac{4.8 \mathrm{kN}}{\pi \cdot(1200 \mathrm{~mm})^{2}}$
8) Average Shear Stress for Circular Section given Maximum Shear Stress $\boxed{\square}$
$\mathrm{fx}_{\mathrm{x}} \tau_{\mathrm{avg}}=\frac{3}{4} \cdot \tau_{\max }$
ex $8.25 \mathrm{MPa}=\frac{3}{4} \cdot 11 \mathrm{MPa}$

Maximum Shear Stress ©

9) Maximum Shear Force given Radius of Circular Section
$\mathrm{fx}_{\mathrm{x}} \mathrm{F}_{\mathrm{s}}=\tau_{\max } \cdot \frac{3}{4} \cdot \pi \cdot \mathrm{R}^{2}$
Open Calculator
ex $37322.12 \mathrm{kN}=11 \mathrm{MPa} \cdot \frac{3}{4} \cdot \pi \cdot(1200 \mathrm{~mm})^{2}$
10) Maximum Shear Stress for Circular Section
$\mathrm{fx}_{\mathrm{x}} \tau_{\max }=\frac{\mathrm{F}_{\mathrm{s}}}{3 \cdot \mathrm{I}} \cdot \mathrm{R}^{2}$
Open Calculator
ex $1.371429 \mathrm{MPa}=\frac{4.8 \mathrm{kN}}{3 \cdot 0.00168 \mathrm{~m}^{4}} \cdot(1200 \mathrm{~mm})^{2}$
11) Maximum Shear Stress for Circular Section given Average Shear Stress
$\mathrm{fx} \tau_{\max }=\frac{4}{3} \cdot \tau_{\text {avg }}$
ex $0.066667 \mathrm{MPa}=\frac{4}{3} \cdot 0.05 \mathrm{MPa}$
12) Maximum Shear Stress given Radius of Circular Section
$\mathrm{fx}_{\mathrm{x}} \tau_{\text {beam }}=\frac{4}{3} \cdot \frac{\mathrm{~F}_{\mathrm{s}}}{\pi \cdot \mathrm{R}^{2}}$
ex $0.001415 \mathrm{MPa}=\frac{4}{3} \cdot \frac{4.8 \mathrm{kN}}{\pi \cdot(1200 \mathrm{~mm})^{2}}$

Moment of Inertia

13) Area Moment of Considered Area about Neutral Axis
$f \mathrm{fx} \mathrm{Ay}=\frac{2}{3} \cdot\left(\mathrm{R}^{2}-\mathrm{y}^{2}\right)^{\frac{3}{2}}$
ex $1.2 \mathrm{E}^{\wedge} 9 \mathrm{~mm}^{3}=\frac{2}{3} \cdot\left((1200 \mathrm{~mm})^{2}-(5 \mathrm{~mm})^{2}\right)^{\frac{3}{2}}$
14) Moment of Inertia of Circular Section $工$
$f x I=\frac{\pi}{4} \cdot R^{4}$
Open Calculator
ex $1.628602 \mathrm{~m}^{4}=\frac{\pi}{4} \cdot(1200 \mathrm{~mm})^{4}$
15) Moment of Inertia of Circular Section given Maximum Shear Stress
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}=\frac{\mathrm{F}_{\mathrm{s}}}{3 \cdot \tau_{\max }} \cdot \mathrm{R}^{2}$
Open Calculator
ex $0.000209 \mathrm{~m}^{4}=\frac{4.8 \mathrm{kN}}{3 \cdot 11 \mathrm{MPa}} \cdot(1200 \mathrm{~mm})^{2}$
16) Moment of Inertia of Circular Section given Shear Stress

Open Calculator

$$
\frac{4.8 \mathrm{kN} \cdot \frac{2}{3} \cdot\left((1200 \mathrm{~mm})^{2}-(5 \mathrm{~mm})^{2}\right)^{\frac{3}{2}}}{6 \mathrm{MPa} \cdot 100 \mathrm{~mm}}
$$

Radius of Circular Section

17) Radius of Circular Section given Average Shear Stress
$\mathrm{f} \mathrm{R}=\sqrt{\frac{\mathrm{F}_{\mathrm{s}}}{\pi \cdot \tau_{\text {avg }}}}$
ex $174.8077 \mathrm{~mm}=\sqrt{\frac{4.8 \mathrm{kN}}{\pi \cdot 0.05 \mathrm{MPa}}}$
18) Radius of Circular Section given Maximum Shear Stress
$\mathrm{fx} \mathrm{R}=\sqrt{\frac{4}{3} \cdot \frac{\mathrm{~F}_{\mathrm{s}}}{\pi \cdot \tau_{\max }}}$
ex $13.60876 \mathrm{~mm}=\sqrt{\frac{4}{3} \cdot \frac{4.8 \mathrm{kN}}{\pi \cdot 11 \mathrm{MPa}}}$
19) Radius of Circular Section given Width of Beam at Considered Level E
$f \times x=\sqrt{\left(\frac{B}{2}\right)^{2}+y^{2}}$
ex $50.24938 \mathrm{~mm}=\sqrt{\left(\frac{100 \mathrm{~mm}}{2}\right)^{2}+(5 \mathrm{~mm})^{2}}$

Variables Used

- Ay First Moment of Area (Cubic Millimeter)
- B Width of Beam Section (Millimeter)
- $\mathbf{F}_{\mathbf{s}}$ Shear Force on Beam (Kilonewton)
- I Moment of Inertia of Area of Section (Meter ${ }^{4}$)
- \mathbf{R} Radius of Circular Section (Millimeter)
- y Distance from Neutral Axis (Millimeter)
- $\tau_{\text {avg }}$ Average Shear Stress on Beam (Megapascal)
- $\tau_{\text {beam }}$ Shear Stress in Beam (Megapascal)
- $\tau_{\text {max }}$ Maximum Shear Stress on Beam (Megapascal)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion $\sqrt{ }$

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Second Moment of Area in Meter ${ }^{4}\left(\mathrm{~m}^{4}\right)$

Second Moment of Area Unit Conversion

- Measurement: First Moment of Area in Cubic Millimeter (mm ${ }^{3}$) First Moment of Area Unit Conversion

Check other formula lists

- Shear Stress in Circular Section Formulas
- Shear Stress in II Section Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

