unitsconverters.com

Shear Stress in I Section Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 33 Shear Stress in I Section Formulas

Shear Stress in I Section ©

Shear Stress Distribution in Flange

1) Area of Flange or Area above Considered Section
$f \mathrm{f} \mathrm{A}_{\mathrm{abv}}=\mathrm{B} \cdot\left(\frac{\mathrm{D}}{2}-\mathrm{y}\right)$
ex $449500 \mathrm{~mm}^{2}=100 \mathrm{~mm} \cdot\left(\frac{9000 \mathrm{~mm}}{2}-5 \mathrm{~mm}\right)$
2) Distance of CG of Considered Area of Flange from Neutral Axis in I Section
$f \mathrm{fx} \overline{\mathrm{y}}=\frac{1}{2} \cdot\left(\frac{\mathrm{D}}{2}+\mathrm{y}\right)$
ex $2252.5 \mathrm{~mm}=\frac{1}{2} \cdot\left(\frac{9000 \mathrm{~mm}}{2}+5 \mathrm{~mm}\right)$
3) Distance of Considered Section from Neutral Axis given Shear Stress in Flange
$\mathrm{fx} \mathrm{y}=\sqrt{\frac{\mathrm{D}^{2}}{2}-\frac{2 \cdot \mathrm{I}}{\mathrm{F}_{\mathrm{s}}} \cdot \tau_{\text {beam }}}$
ex $6024.948 \mathrm{~mm}=\sqrt{\frac{(9000 \mathrm{~mm})^{2}}{2}-\frac{2 \cdot 0.00168 \mathrm{~m}^{4}}{4.8 \mathrm{kN}} \cdot 6 \mathrm{MPa}}$
4) Distance of Lower Edge of Flange from Neutral Axis
$f \mathrm{fx}=\frac{\mathrm{d}}{2}$
ex $225 \mathrm{~mm}=\frac{450 \mathrm{~mm}}{2}$
5) Distance of Upper Edge of Flange from Neutral Axis
$f \mathrm{fx}=\frac{\mathrm{D}}{2}$
ex $4500 \mathrm{~mm}=\frac{9000 \mathrm{~mm}}{2}$
6) Inner Depth of l-section given Shear Stress in Lower Edge of Flange
$f \mathbf{f x}=\sqrt{\mathrm{D}^{2}-\frac{8 \cdot I}{\mathrm{~F}_{\mathrm{S}}} \cdot \tau_{\text {beam }}}$
ex $8012.49 \mathrm{~mm}=\sqrt{(9000 \mathrm{~mm})^{2}-\frac{8 \cdot 0.00168 \mathrm{~m}^{4}}{4.8 \mathrm{kN}} \cdot 6 \mathrm{MPa}}$
7) Moment of Inertia of I section given Shear Stress in Lower Edge of Flange

$$
f \mathrm{x} I=\frac{\mathrm{F}_{\mathrm{s}}}{8 \cdot \tau_{\text {beam }}} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)
$$

ex $0.00808 \mathrm{~m}^{4}=\frac{4.8 \mathrm{kN}}{8 \cdot 6 \mathrm{MPa}} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)$
8) Moment of Inertia of Section for I-section
$\mathrm{fx} I=\frac{\mathrm{F}_{\mathrm{s}}}{2 \cdot \tau_{\text {beam }}} \cdot\left(\frac{\mathrm{D}^{2}}{2}-\mathrm{y}^{2}\right)$
ex $0.0162 \mathrm{~m}^{4}=\frac{4.8 \mathrm{kN}}{2 \cdot 6 \mathrm{MPa}} \cdot\left(\frac{(9000 \mathrm{~mm})^{2}}{2}-(5 \mathrm{~mm})^{2}\right)$
9) Outer Depth of I section given Shear Stress in Lower Edge of Flange $\widetilde{\boxed{ } 1}$
$\mathrm{D}=\sqrt{\frac{8 \cdot \mathrm{I}}{\mathrm{F}_{\mathrm{s}}} \cdot \tau_{\text {beam }}+\mathrm{d}^{2}}$
ex $4123.409 \mathrm{~mm}=\sqrt{\frac{8 \cdot 0.00168 \mathrm{~m}^{4}}{4.8 \mathrm{kN}} \cdot 6 \mathrm{MPa}+(450 \mathrm{~mm})^{2}}$
10) Outer Depth of I-section given Shear Stress in Flange $\sqrt{ }$
$\mathrm{D}=4 \cdot \sqrt{\frac{2 \cdot \mathrm{I}}{\mathrm{F}_{\mathrm{s}}} \cdot \tau_{\text {beam }}+\mathrm{y}^{2}}$
ex $8197.585 \mathrm{~mm}=4 \cdot \sqrt{\frac{2 \cdot 0.00168 \mathrm{~m}^{4}}{4.8 \mathrm{kN}} \cdot 6 \mathrm{MPa}+(5 \mathrm{~mm})^{2}}$
11) Shear Force in Flange of I-section
$\mathrm{fx} \mathrm{F}_{\mathrm{s}}=\frac{2 \cdot \mathrm{I} \cdot \tau_{\text {beam }}}{\frac{\mathrm{D}^{2}}{2}-\mathrm{y}^{2}}$
ex $0.497778 \mathrm{kN}=\frac{2 \cdot 0.00168 \mathrm{~m}^{4} \cdot 6 \mathrm{MPa}}{\frac{(9000 \mathrm{~mm})^{2}}{2}-(5 \mathrm{~mm})^{2}}$
12) Shear Force in Lower Edge of Flange in I-section $\begin{aligned} & \text { (}\end{aligned}$
$\mathrm{fx} \mathrm{F}_{\mathrm{s}}=\frac{8 \cdot \mathrm{I} \cdot \tau_{\text {beam }}}{\mathrm{D}^{2}-\mathrm{d}^{2}}$
ex $0.998051 \mathrm{kN}=\frac{8 \cdot 0.00168 \mathrm{~m}^{4} \cdot 6 \mathrm{MPa}}{(9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}}$
13) Shear Stress in Flange of I-section
$\tau_{\text {beam }}=\frac{\mathrm{F}_{\mathrm{s}}}{2 \cdot \mathrm{I}} \cdot\left(\frac{\mathrm{D}^{2}}{2}-\mathrm{y}^{2}\right)$
ex $57.85711 \mathrm{MPa}=\frac{4.8 \mathrm{kN}}{2 \cdot 0.00168 \mathrm{~m}^{4}} \cdot\left(\frac{(9000 \mathrm{~mm})^{2}}{2}-(5 \mathrm{~mm})^{2}\right)$
14) Shear Stress in Lower Edge of Flange of I-section
$f x \tau_{\text {beam }}=\frac{\mathrm{F}_{\mathrm{s}}}{8 \cdot \mathrm{I}} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)$
ex $28.85625 \mathrm{MPa}=\frac{4.8 \mathrm{kN}}{8 \cdot 0.00168 \mathrm{~m}^{4}} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)$
15) Width of Section given Area above Considered Section of Flange
$f \mathrm{x} B=\frac{\mathrm{A}_{\mathrm{abv}}}{\frac{\mathrm{D}}{2}-\mathrm{y}}$
ex $1.423804 \mathrm{~mm}=\frac{6400 \mathrm{~mm}^{2}}{\frac{9000 \mathrm{~mm}}{2}-5 \mathrm{~mm}}$

Shear Stress Distribution in Web

16) Distance of Considered Level from Neutral Axis at Junction of Top of Web
$f \mathrm{fx}=\frac{\mathrm{d}}{2}$
$225 \mathrm{~mm}=\frac{450 \mathrm{~mm}}{2}$
17) Maximum Shear Force in I Section
$f \mathrm{fx} \mathrm{F}_{\mathrm{s}}=\frac{\tau_{\max } \cdot \mathrm{I} \cdot \mathrm{b}}{\frac{\mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8}+\frac{\mathrm{b} \cdot \mathrm{d}^{2}}{8}}$
ex $0.128061 \mathrm{kN}=\frac{11 \mathrm{MPa} \cdot 0.00168 \mathrm{~m}^{4} \cdot 7 \mathrm{~mm}}{\frac{100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8}+\frac{7 \mathrm{~mm} \cdot(450 \mathrm{~mm})^{2}}{8}}$
18) Maximum Shear Stress in I Section
$\mathrm{fx} \tau_{\max }=\frac{\mathrm{F}_{\mathrm{s}}}{\mathrm{I} \cdot \mathrm{b}} \cdot\left(\frac{\mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8}+\frac{\mathrm{b} \cdot \mathrm{d}^{2}}{8}\right)$
ex $412.3045 \mathrm{MPa}=\frac{4.8 \mathrm{kN}}{0.00168 \mathrm{~m}^{4} \cdot 7 \mathrm{~mm}} \cdot\left(\frac{100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8}+\frac{7 \mathrm{~mm} \cdot(450 \mathrm{~mm})^{2}}{8}\right)$
19) Moment of Flange Area about Neutral Axis
$\mathrm{fx} \mathrm{I}=\frac{\mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8}$
ex $1.009969 \mathrm{~m}^{4}=\frac{100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8}$
20) Moment of Inertia of I-Section given Maximum Shear Stress and Force
$\mathrm{fx} I=\frac{\mathrm{F}_{\mathrm{s}}}{\tau_{\text {beam }} \cdot b} \cdot\left(\frac{\mathrm{~B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8}+\frac{\mathrm{b} \cdot \mathrm{d}^{2}}{8}\right)$
ex $0.115445 \mathrm{~m}^{4}=\frac{4.8 \mathrm{kN}}{6 \mathrm{MPa} \cdot 7 \mathrm{~mm}} \cdot\left(\frac{100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8}+\frac{7 \mathrm{~mm} \cdot(450 \mathrm{~mm})^{2}}{8}\right)$
21) Moment of Inertia of I-Section given Shear Stress of Web
$f \mathrm{x} I=\frac{\mathrm{F}_{\mathrm{s}}}{\tau_{\text {beam }} \cdot \mathrm{b}} \cdot\left(\frac{\mathrm{B}}{8} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)+\frac{\mathrm{b}}{2} \cdot\left(\frac{\mathrm{~d}^{2}}{4}-\mathrm{y}^{2}\right)\right)$
ex
$0.115445 \mathrm{~m}^{4}=\frac{4.8 \mathrm{kN}}{6 \mathrm{MPa} \cdot 7 \mathrm{~mm}} \cdot\left(\frac{100 \mathrm{~mm}}{8} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)+\frac{7 \mathrm{~mm}}{2} \cdot\left(\frac{(450 \mathrm{~mm})^{2}}{4}-(5 \mathrm{~mm})^{2}\right)\right)$
22) Moment of Inertia of Section given Shear Stress at Junction of Top of Web
$f \mathrm{x} I=\frac{\mathrm{F}_{\mathrm{s}} \cdot \mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8 \cdot \tau_{\text {beam }} \cdot \mathrm{b}}$
ex $0.115425 \mathrm{~m}^{4}=\frac{4.8 \mathrm{kN} \cdot 100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8 \cdot 6 \mathrm{MPa} \cdot 7 \mathrm{~mm}}$
23) Moment of Shaded Area of Web about Neutral Axis
$f \mathrm{x} I=\frac{\mathrm{b}}{2} \cdot\left(\frac{\mathrm{~d}^{2}}{4}-\mathrm{y}^{2}\right)$
ex $0.000177 \mathrm{~m}^{4}=\frac{7 \mathrm{~mm}}{2} \cdot\left(\frac{(450 \mathrm{~mm})^{2}}{4}-(5 \mathrm{~mm})^{2}\right)$
24) Shear Force at Junction of Top of Web
$f \mathrm{f} \mathrm{F}_{\mathrm{s}}=\frac{8 \cdot \mathrm{I} \cdot \mathrm{b} \cdot \tau_{\text {beam }}}{\mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}$
ex $0.069864 \mathrm{kN}=\frac{8 \cdot 0.00168 \mathrm{~m}^{4} \cdot 7 \mathrm{~mm} \cdot 6 \mathrm{MPa}}{100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}$
25) Shear Force in Web
$f x \mathrm{~F}_{\mathrm{s}}=\frac{\mathrm{I} \cdot \mathrm{b} \cdot \tau_{\text {beam }}}{\frac{\mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8}+\frac{\mathrm{b}}{2} \cdot\left(\frac{\mathrm{~d}^{2}}{4}-\mathrm{y}^{2}\right)}$
ex $0.069851 \mathrm{kN}=\frac{0.00168 \mathrm{~m}^{4} \cdot 7 \mathrm{~mm} \cdot 6 \mathrm{MPa}}{\frac{100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8}+\frac{7 \mathrm{~mm}}{2} \cdot\left(\frac{(450 \mathrm{~mm})^{2}}{4}-(5 \mathrm{~mm})^{2}\right)}$
26) Shear Stress at Junction of Top of Web
$f \mathrm{f} \tau_{\text {beam }}=\frac{\mathrm{F}_{\mathrm{s}} \cdot \mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8 \cdot \mathrm{I} \cdot \mathrm{b}}$
ex $412.2321 \mathrm{MPa}=\frac{4.8 \mathrm{kN} \cdot 100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8 \cdot 0.00168 \mathrm{~m}^{4} \cdot 7 \mathrm{~mm}}$

27) Shear Stress in Web

$\mathrm{fx} \tau_{\text {beam }}=\frac{\mathrm{F}_{\mathrm{s}}}{\mathrm{I} \cdot \mathrm{b}} \cdot\left(\frac{\mathrm{B}}{8} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)+\frac{\mathrm{b}}{2} \cdot\left(\frac{\mathrm{~d}^{2}}{4}-\mathrm{y}^{2}\right)\right)$
$412.3044 \mathrm{MPa}=\frac{4.8 \mathrm{kN}}{0.00168 \mathrm{~m}^{4} \cdot 7 \mathrm{~mm}} \cdot\left(\frac{100 \mathrm{~mm}}{8} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)+\frac{7 \mathrm{~mm}}{2} \cdot\left(\frac{(450 \mathrm{~mm})^{2}}{4}-(5 \mathrm{~mm}\right.\right.$
28) Thickness of Web
$\mathrm{b}=\frac{2 \cdot \mathrm{I}}{\frac{\mathrm{d}^{2}}{4}-\mathrm{y}^{2}}$
ex $66.40316 \mathrm{~mm}=\frac{2 \cdot 0.00168 \mathrm{~m}^{4}}{\frac{(450 \mathrm{~mm})^{2}}{4}-(5 \mathrm{~mm})^{2}}$
29) Thickness of Web given Maximum Shear Stress and Force
$f \mathbf{x}=\frac{B \cdot F_{s} \cdot\left(D^{2}-d^{2}\right)}{8 \cdot I \cdot \tau_{\text {beam }}-F_{s} \cdot d^{2}}$
ex $486.8052 \mathrm{~mm}=\frac{100 \mathrm{~mm} \cdot 4.8 \mathrm{kN} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8 \cdot 0.00168 \mathrm{~m}^{4} \cdot 6 \mathrm{MPa}-4.8 \mathrm{kN} \cdot(450 \mathrm{~mm})^{2}}$
30) Thickness of Web given Shear Stress at Junction of Top of Web
$\mathrm{fx} \mathrm{b}=\frac{\mathrm{F}_{\mathrm{s}} \cdot \mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8 \cdot \mathrm{I} \cdot \tau_{\text {beam }}}$
ex $480.9375 \mathrm{~mm}=\frac{4.8 \mathrm{kN} \cdot 100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8 \cdot 0.00168 \mathrm{~m}^{4} \cdot 6 \mathrm{MPa}}$
31) Thickness of Web given Shear Stress of Web
$f \mathrm{f}=\frac{\mathrm{F}_{\mathrm{s}} \cdot \mathrm{B} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}{8 \cdot \mathrm{I} \cdot \tau_{\text {beam }}-\mathrm{F}_{\mathrm{s}} \cdot\left(\mathrm{d}^{2}-4 \cdot \mathrm{y}^{2}\right)}$
ex $486.8023 \mathrm{~mm}=\frac{4.8 \mathrm{kN} \cdot 100 \mathrm{~mm} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}{8 \cdot 0.00168 \mathrm{~m}^{4} \cdot 6 \mathrm{MPa}-4.8 \mathrm{kN} \cdot\left((450 \mathrm{~mm})^{2}-4 \cdot(5 \mathrm{~mm})^{2}\right)}$
32) Width of Section given Moment of Flange Area about Neutral Axis
$\mathrm{fx} \mathrm{B}=\frac{8 \cdot \mathrm{I}}{\mathrm{D}^{2}-\mathrm{d}^{2}}$
ex $0.166342 \mathrm{~mm}=\frac{8 \cdot 0.00168 \mathrm{~m}^{4}}{(9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}}$
33) Width of Section given Shear Stress at Junction of Top of Web
$f \mathrm{fx}=\frac{\tau_{\text {beam }} \cdot 8 \cdot \mathrm{I} \cdot \mathrm{b}}{\mathrm{F}_{\mathrm{s}} \cdot\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)}$
ex $1.455491 \mathrm{~mm}=\frac{6 \mathrm{MPa} \cdot 8 \cdot 0.00168 \mathrm{~m}^{4} \cdot 7 \mathrm{~mm}}{4.8 \mathrm{kN} \cdot\left((9000 \mathrm{~mm})^{2}-(450 \mathrm{~mm})^{2}\right)}$

Variables Used

- $\mathbf{A}_{\text {abv }}$ Area of Section above Considered Level (Square Millimeter)
- b Thickness of Beam Web (Millimeter)
- B Width of Beam Section (Millimeter)
- d Inner Depth of I Section (Millimeter)
- D Outer Depth of I section (Millimeter)
- $\mathrm{F}_{\mathbf{s}}$ Shear Force on Beam (Kilonewton)
- I Moment of Inertia of Area of Section (Meter4)
- y Distance from Neutral Axis (Millimeter)
- $\overline{\mathbf{y}}$ Distance of CG of Area from NA (Millimeter)
- $\tau_{\text {beam }}$ Shear Stress in Beam (Megapascal)
- $\tau_{\text {max }}$ Maximum Shear Stress on Beam (Megapascal)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Kilonewton (kN)

Force Unit Conversion

- Measurement: Second Moment of Area in Meter ${ }^{4}\left(\mathrm{~m}^{4}\right)$

Second Moment of Area Unit Conversion

Check other formula lists

- Shear Stress in Circular Section Formulas
- Shear Stress in Rectangular Section Formulas

凹

- Shear Stress in I Section Formulas

Feel free to SHARE this document with your friends!

PDF Available in
English Spanish French German Russian Italian Portuguese Polish Dutch

