

Transverse Fillet Weld Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Transverse Fillet Weld Formulas

Transverse Fillet Weld

1) Allowable Load per mm Length of Transverse Fillet Weld

fx $P_{\rm a}=0.8284\cdot {
m h_l}\cdot au_{
m max}$

Open Calculator 2

- 2) Force Acting given Shear Stress-induced in Plane that is Inclined at angle theta

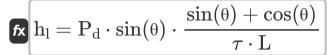
$$ag{P_{
m d} = rac{ au \cdot
m h_l \cdot L}{\sin(heta) \cdot (\sin(heta) + \cos(heta))}}$$

Open Calculator 🖸

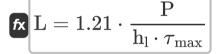
- 3) Leg of Weld given Allowable Lod per mm Length of Transverse Fillet Weld

Open Calculator

ex
$$21.0563 \mathrm{mm} = rac{1378 \mathrm{N/mm}}{0.8284 \cdot 79 \mathrm{N/mm^2}}$$


4) Leg of Weld given Maximum Shear Stress-induced in Plane

Open Calculator 🗗


$$= 21.10608 \mathrm{mm} = 1.21 \cdot \frac{1378 \mathrm{N/mm}}{79 \mathrm{N/mm^2}}$$

5) Leg of Weld given Shear Stress-induced in Plane

Open Calculator

6) Length of Weld given Maximum Shear Stress-induced in Plane

Open Calculator 🗗

ex
$$194.1289 \mathrm{mm} = 1.21 \cdot \frac{268.7 \mathrm{kN}}{21.2 \mathrm{mm} \cdot 79 \mathrm{N/mm^2}}$$

7) Length of Weld given Shear Stress-induced in Plane that is inclined at Angle theta

 $\mathbf{E} = \mathrm{P_d} \cdot \sin(heta) \cdot rac{\sin(heta) + \cos(heta)}{ au \cdot \mathrm{h_l}}$

Open Calculator

 $= 26.87 \text{kN} \cdot \sin(45\degree) \cdot \frac{\sin(45\degree) + \cos(45\degree)}{6.5 \text{N/mm}^2 \cdot 21.2 \text{mm}}$

8) Length of weld given Tensile Stress in Transverse Fillet Weld

 $\mathbf{E} = rac{P_{t}}{0.707 \cdot h_{l} \cdot \sigma_{t}}$

Open Calculator

 $= \frac{165.5 \text{kN}}{0.707 \cdot 21.2 \text{mm} \cdot 56.4 \text{N/mm}^2}$

9) Maximum Shear Stress-induced given Allowable Load per mm length of Transverse Fillet Weld

 $au_{
m max} = rac{
m P_a}{0.8284 \cdot
m h_l}$

Open Calculator 🗗

 $ext{ex} 78.46451 ext{N/mm}^2 = rac{1378 ext{N/mm}}{0.8284 \cdot 21.2 ext{mm}}$

10) Maximum Shear Stress-induced in Plane that is Inclined at Angle theta

 $au_{
m max} = 1.21 \cdot rac{
m P}{
m h_l \cdot L}$

Open Calculator 🚰

 $ext{ex} \ 78.64707 ext{N}/ ext{mm}^2 = 1.21 \cdot rac{268.7 ext{kN}}{21.2 ext{mm} \cdot 195 ext{mm}}$

11) Permissible Tensile Strength for Double Transverse Fillet Joint

 $\left|\mathbf{\sigma}_{\mathrm{t}}
ight|=rac{\mathrm{P}}{1.414\cdot\mathrm{L}\cdot\mathrm{L}}$

Open Calculator

 $\mathbf{ex} = \frac{268.7 \mathrm{kN}}{1.414 \cdot 195 \mathrm{mm} \cdot 195 \mathrm{mm}}$

12) Shear Stress-Induced in Plane that is inclined at Angle theta to Horizontal

 $au = \mathrm{P_d} \cdot \sin(heta) \cdot rac{\sin(heta) + \cos(heta)}{\mathrm{h_l} \cdot \mathrm{L}}$

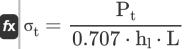
Open Calculator 🖸

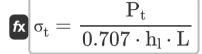
 $= 26.87 \mathrm{kN} \cdot \sin(45°) \cdot \frac{\sin(45°) + \cos(45°)}{21.2 \mathrm{mm} \cdot 195 \mathrm{mm}}$

13) Tensile Force on Plates given Tensile Stress in Transverse Fillet Weld

fx $P_{t} = \sigma_{t} \cdot 0.707 \cdot h_{l} \cdot L$

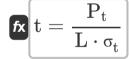
Open Calculator 🗗


 $\mathbf{ex} \ 164.8424 \mathrm{kN} = 56.4 \mathrm{N/mm^2 \cdot 0.707 \cdot 21.2 mm \cdot 195 mm}$


14) Tensile Stress in Transverse Fillet Weld

Open Calculator

$$ext{ex} egin{aligned} 56.62499 ext{N/mm}^2 &= rac{165.5 ext{kN}}{0.707 \cdot 21.2 ext{mm} \cdot 195 ext{mm}} \end{aligned}$$


15) Tensile Stress in Transverse Fillet Weld given Leg of Weld

Open Calculator

$$ext{ex} \ 56.62499 ext{N/mm}^2 = rac{165.5 ext{kN}}{0.707 \cdot 21.2 ext{mm} \cdot 195 ext{mm}}$$

16) Thickness of Plate given Tensile Stress in Transverse Fillet Weld

Open Calculator 🗗

$$ext{ex} 15.04819 ext{mm} = rac{165.5 ext{kN}}{195 ext{mm} \cdot 56.4 ext{N/mm}^2}$$

Variables Used

- **h**_I Leg of Weld (Millimeter)
- L Length of Weld (Millimeter)
- P Load on Weld (Kilonewton)
- Pa Load per Unit Length in Transverse Fillet Weld (Newton per Millimeter)
- Pd Load on Double Transverse Fillet Weld (Kilonewton)
- Pt Load on Transverse Fillet Weld (Kilonewton)
- t Thickness of Transverse Fillet Welded Plate (Millimeter)
- **0** Weld Cut Angle (Degree)
- σ_t Tensile Stress in Transverse Fillet Weld (Newton per Square Millimeter)
- τ Shear Stress in Transverse Fillet Weld (Newton per Square Millimeter)
- τ_{max} Maximum Shear Stress in Transverse Fillet Weld (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)

 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle)

 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Force in Kilonewton (kN)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Surface Tension in Newton per Millimeter (N/mm)
 Surface Tension Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
 Stress Unit Conversion

Check other formula lists

- Butt Welds Formulas
- Parallel Fillet Welds Formulas Formulas
- Transverse Fillet Weld

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/18/2024 | 5:39:26 AM UTC

Please leave your feedback here...

