

Conduction in Plane Wall Formulas

Calculators!

Examples

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 22 Conduction in Plane Wall Formulas

Conduction in Plane Wall

1) Area of Plane Wall Required for Given Temperature Difference

$$\mathbf{K} egin{equation} \mathbf{A}_{\mathrm{wall}} = rac{\mathbf{Q} \cdot \mathbf{L}}{\mathbf{k} \cdot (T_{\mathrm{i}} - T_{\mathrm{o}})} \end{aligned}$$

$$\boxed{ 50 m^2 = \frac{125 W \cdot 3 m}{10 W / (m^* K) \cdot (400.75 K - 400 K)} }$$

2) Inner Surface Temperature of Plane Wall

$$\boxed{ T_i = T_o + \frac{Q \cdot L}{k \cdot A_{wall}} }$$

$$\boxed{\text{ex}} 400.75 \text{K} = 400 \text{K} + \frac{125 \text{W} \cdot 3 \text{m}}{10 \text{W} / (\text{m*K}) \cdot 50 \text{m}^2}$$

3) Outer Surface Temperature of Wall in Conduction through Wall

$$\mathbf{T}_{o} = T_{i} - rac{Q \cdot L}{k \cdot A_{wall}}$$

$$\boxed{ 400 \text{K} = 400.75 \text{K} - \frac{125 \text{W} \cdot 3 \text{m}}{10 \text{W} / (\text{m*K}) \cdot 50 \text{m}^2} }$$

4) Temperature at Distance x from Inner Surface in Wall

$$T = T_{
m i} - rac{
m x}{
m L} \cdot (T_{
m i} - T_{
m o})$$

5) Thermal Conductivity of Material Required to Maintain Given Temperature Difference

$$k = rac{Q \cdot L}{(T_i - T_o) \cdot A_{wall}}$$

$$\boxed{ \text{ex} \\ 10 \text{W}/(\text{m*K}) = \frac{125 \text{W} \cdot 3 \text{m}}{(400.75 \text{K} - 400 \text{K}) \cdot 50 \text{m}^2} }$$

6) Thermal Resistance of Wall

$$extbf{R}_{ ext{th}} = rac{L}{k \cdot A}$$

Open Calculator

7) Thickness of Plane Wall for Conduction through Wall

$$L = \frac{(T_i - T_o) \cdot k \cdot A_{wall}}{Q}$$

Open Calculator 🗗

$$\text{ex} \boxed{3m = \frac{(400.75K - 400K) \cdot 10W/(m*K) \cdot 50m^2}{125W}}$$

8) Total Thermal Resistance of Plane Wall with Convection on Both Sides

$$\boxed{\mathbf{\hat{k}}} \mathbf{r}_{th} = \frac{1}{\mathbf{h}_i \cdot \mathbf{A}_{wall}} + \frac{\mathbf{L}}{\mathbf{k} \cdot \mathbf{A}_{wall}} + \frac{1}{\mathbf{h}_o \cdot \mathbf{A}_{wall}}$$

Open Calculator

$$\boxed{ \text{ex} \left[0.022856 \text{K/W} = \frac{1}{1.35 \text{W/m}^2 \text{*K} \cdot 50 \text{m}^2} + \frac{3 \text{m}}{10 \text{W/(m}^* \text{K}) \cdot 50 \text{m}^2} + \frac{1}{9.8 \text{W/m}^2 \text{*K} \cdot 50 \text{m}^2} \right] }$$

2 Layers 🗗

9) Area of Composite Wall of 2 Layers

$$\mathbf{A}_{2 ext{wall}} = rac{\mathrm{Q}_{2 ext{layer}}}{\mathrm{T}_{\mathrm{i}2} - \mathrm{T}_{\mathrm{o}2}} \cdot \left(rac{\mathrm{L}_1}{\mathrm{k}_1} + rac{\mathrm{L}_2}{\mathrm{k}_2}
ight)$$

Open Calculator 🗗

$$\boxed{ 866.6667 m^2 = \frac{120 W}{420.75 K - 420 K} \cdot \left(\frac{2 m}{1.6 W/(m^* K)} + \frac{5 m}{1.2 W/(m^* K)} \right) }$$

10) Heat Flow Rate through Composite Wall of 2 Layers in Series

$$oldsymbol{ ilde{K}} oldsymbol{Q}_{2 ext{layer}} = rac{T_{i2} - T_{o2}}{rac{L_1}{k_1 \cdot A_{2 ext{wall}}} + rac{L_2}{k_2 \cdot A_{2 ext{wall}}}}$$

Open Calculator

$$\boxed{ 120 W = \frac{420.75 K - 420 K}{\frac{2m}{1.6 W/(m^* K) \cdot 866.6667 m^2} + \frac{5m}{1.2 W/(m^* K) \cdot 866.6667 m^2} } }$$

11) Inner Surface Temperature of Composite Wall for 2 Layers in Series

$$T_{i2} = T_{o2} + Q_{2layer} \cdot \left(rac{L_1}{k_1 \cdot A_{2wall}} + rac{L_2}{k_2 \cdot A_{2wall}}
ight)$$

Open Calculator 🗗

$$\boxed{ 420.75 \text{K} = 420 \text{K} + 120 \text{W} \cdot \left(\frac{2 \text{m}}{1.6 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2} + \frac{5 \text{m}}{1.2 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2} \right) } \right) }$$

12) Interface Temperature of Composite Wall of 2 Layers given Inner Surface Temperature

$$oxed{ extbf{fz}} egin{aligned} \mathbf{T}_2 = \mathbf{T}_1 - rac{\mathbf{Q}_{2 ext{layer}} \cdot \mathbf{L}_1}{\mathbf{k}_1 \cdot \mathbf{A}_{2 ext{wall}}} \end{aligned}$$

Open Calculator 🚰

$$\boxed{ 420.5769 K = 420.74997 K - \frac{120W \cdot 2m}{1.6W/(m^*K) \cdot 866.6667m^2} }$$

13) Interface Temperature of Composite Wall of 2 Layers given Outer Surface Temperature

$$ag{T}_2 = ext{T}_{ ext{o2}} + rac{ ext{Q}_{2 ext{layer}} \cdot ext{L}_2}{ ext{k}_2 \cdot ext{A}_{2 ext{wall}}}$$

Open Calculator

$$\boxed{\texttt{ex}} \boxed{420.5769 \text{K} = 420 \text{K} + \frac{120 \text{W} \cdot 5 \text{m}}{1.2 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2}}$$

14) Length of 2nd Layer of Composite Wall in Conduction through Walls

$$egin{aligned} \mathbb{L}_2 = \mathbb{k}_2 \cdot \mathbb{A}_{2 ext{wall}} \cdot \left(rac{\mathrm{T}_{\mathrm{i2}} - \mathrm{T}_{\mathrm{o2}}}{\mathrm{Q}_{2 ext{layer}}} - rac{\mathrm{L}_1}{\mathbb{k}_1 \cdot \mathrm{A}_{2 ext{wall}}}
ight) \end{aligned}$$

Open Calculator

$$\boxed{\text{ex} \left[5m = 1.2 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2 \cdot \left(\frac{420.75 \text{K} - 420 \text{K}}{120 \text{W}} - \frac{2 \text{m}}{1.6 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2}\right)\right]}$$

15) Outer Surface Temperature of Composite Wall of 2 Layers for Conduction

$$ag{K} T_{o2} = T_{i2} - Q_{2 ext{layer}} \cdot \left(rac{L_1}{ ext{k}_1 \cdot A_{2 ext{wall}}} + rac{L_2}{ ext{k}_2 \cdot A_{2 ext{wall}}}
ight)$$

Open Calculator

$$\boxed{ 420 \text{K} = 420.75 \text{K} - 120 \text{W} \cdot \left(\frac{2 \text{m}}{1.6 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2} + \frac{5 \text{m}}{1.2 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2} \right) }$$

16) Thermal Resistance of Composite Wall with 2 Layers in Series

$$oldsymbol{\kappa} egin{equation} R_{ ext{th2}} = rac{L_1}{k_1 \cdot A_{2 ext{wall}}} + rac{L_2}{k_2 \cdot A_{2 ext{wall}}} \end{gathered}$$

Open Calculator

$$\boxed{ 0.00625 \text{K/W} = \frac{2 \text{m}}{1.6 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2} + \frac{5 \text{m}}{1.2 \text{W}/(\text{m*K}) \cdot 866.6667 \text{m}^2} }$$

© calculatoratoz.com. A softusvista inc. venture!

3 Layers 🗗

17) Area of Composite Wall of 3 Layers

$$oldsymbol{A}_{3 ext{wall}} = rac{ ext{Q}_{3 ext{layer}}}{ ext{T}_{i3} - ext{T}_{o3}} \cdot \left(rac{ ext{L}_1}{ ext{k}_1} + rac{ ext{L}_2}{ ext{k}_2} + rac{ ext{L}_3}{ ext{k}_3}
ight)$$

Open Calculator 🖸

$$\boxed{ \textbf{ex} } \ 1383.333 m^2 = \frac{150 W}{300.75 K - 300 K} \cdot \left(\frac{2 m}{1.6 W/(m^* K)} + \frac{5 m}{1.2 W/(m^* K)} + \frac{6 m}{4 W/(m^* K)} \right)$$

18) Heat Flow Rate through Composite Wall of 3 Layers in Series

$$Q_{3layer} = \frac{T_{i3} - T_{o3}}{\frac{L_1}{k_1 \cdot A_{3wall}} + \frac{L_2}{k_2 \cdot A_{3wall}} + \frac{L_3}{k_3 \cdot A_{3wall}}}$$

Open Calculator 🗗

$$= \frac{300.75 K - 300 K}{\frac{2m}{1.6W/(m^*K) \cdot 1383.3333m^2} + \frac{5m}{1.2W/(m^*K) \cdot 1383.3333m^2} + \frac{6m}{4W/(m^*K) \cdot 1383.3333m^2}}$$

19) Inner Surface Temperature of Composite Wall of 3 Layers in Series

$$ag{T_{i3} = T_{o3} + Q_{3layer} \cdot \left(rac{L_1}{k_1 \cdot A_{3wall}} + rac{L_2}{k_2 \cdot A_{3wall}} + rac{L_3}{k_3 \cdot A_{3wall}}
ight)}$$

Open Calculator 🚰

$$\boxed{300.75 \text{K} = 300 \text{K} + 150 \text{W} \cdot \left(\frac{2 \text{m}}{1.6 \text{W}/(\text{m}^*\text{K}) \cdot 1383.3333 \text{m}^2} + \frac{5 \text{m}}{1.2 \text{W}/(\text{m}^*\text{K}) \cdot 1383.3333 \text{m}^2} + \frac{6 \text{M}}{4 \text{W}/(\text{m}^*$$

20) Length of 3rd Layer of Composite Wall in Conduction through Walls

$$\mathbf{L}_3 = \mathbf{k}_3 \cdot \mathbf{A}_{3 ext{wall}} \cdot \left(rac{\mathbf{T}_{i3} - \mathbf{T}_{o3}}{\mathbf{Q}_{3 ext{layer}}} - rac{\mathbf{L}_1}{\mathbf{k}_1 \cdot \mathbf{A}_{3 ext{wall}}} - rac{\mathbf{L}_2}{\mathbf{k}_2 \cdot \mathbf{A}_{3 ext{wall}}}
ight)$$

Open Calculator 🗗

ex

$$\boxed{6m = 4W/(m^*K) \cdot 1383.33333m^2 \cdot \left(\frac{300.75K - 300K}{150W} - \frac{2m}{1.6W/(m^*K) \cdot 1383.33333m^2} - \frac{5m}{1.2W/(m^*K) \cdot 1383.33333m^2} - \frac{5m}{1.2W/(m^*K) \cdot 1383.33333m^2} \right)} = \frac{5m}{1.2W/(m^*K)} + \frac{5m}{1.2W/(m^*K)}$$

21) Outer Surface Temperature of Composite Wall of 3 Layers for Conduction 🖸

$$ag{T_{o3} = T_{i3} - Q_{3layer} \cdot \left(rac{L_1}{k_1 \cdot A_{3wall}} + rac{L_2}{k_2 \cdot A_{3wall}} + rac{L_3}{k_3 \cdot A_{3wall}}
ight)}$$

Open Calculator

ex

$$300 K = 300.75 K - 150 W \cdot \left(\frac{2 m}{1.6 W/(m^* K) \cdot 1383.3333 m^2} + \frac{5 m}{1.2 W/(m^* K) \cdot 1383.3333 m^2} + \frac{6 m}{4 W/(m^* K) \cdot 1383.333 m^2} + \frac{6 m}{4 W/(m^* K) \cdot 1383.33 m^2} + \frac{6 m}{4 W/(m^* K) \cdot 1$$

22) Thermal Resistance of Composite Wall with 3 Layers in Series

Open Calculator

$$0.005 \text{K/W} = \frac{2 \text{m}}{1.6 \text{W/(m*K)} \cdot 1383.3333 \text{m}^2} + \frac{5 \text{m}}{1.2 \text{W/(m*K)} \cdot 1383.3333 \text{m}^2} + \frac{6 \text{m}}{4 \text{W/(m*K)} \cdot 1383.3333 \text{m}^2}$$

Variables Used

- A Cross-Sectional Area (Square Meter)
- A_{2wall} Area of 2 Layer Wall (Square Meter)
- A_{3wall} Area of 3 Layer Wall (Square Meter)
- Awall Area of Wall (Square Meter)
- hi Inside Convection (Watt per Square Meter per Kelvin)
- ho External Convection (Watt per Square Meter per Kelvin)
- **k** Thermal Conductivity (Watt per Meter per K)
- **k**₁ Thermal Conductivity 1 (Watt per Meter per K)
- k₂ Thermal Conductivity 2 (Watt per Meter per K)
- k₃ Thermal Conductivity 3 (Watt per Meter per K)
- L Length (Meter)
- L₁ Length 1 (Meter)
- L₂ Length 2 (Meter)
- L₃ Length 3 (Meter)
- Q Heat Flow Rate (Watt)
- Q_{2|aver} Heat Flow Rate 2 Layer (Watt)
- Q_{3laver} Heat Flow Rate 3 Layer (Watt)
- rth Thermal Resistance with Convection (Kelvin per Watt)
- Rth Thermal Resistance (Kelvin per Watt)
- R_{th2} Thermal Resistance of 2 Layer (Kelvin per Watt)
- Rth3 Thermal Resistance of 3 Layer (Kelvin per Watt)
- T Temperature (Kelvin)
- T₁ Temperature of Surface 1 (Kelvin)
- T₂ Temperature of Surface 2 (Kelvin)
- T_i Inner Surface Temperature (Kelvin)
- T_{i2} Inner Surface Temperature 2 layer wall (Kelvin)
- T_{i3} Inner Surface Temperature 3 Layer Wall (Kelvin)
- To Outer Surface Temperature (Kelvin)
- T₀₂ Outer Surface Temperature of 2 Layer (Kelvin)
- T_{o3} Outer Surface Temperature 3 Layer (Kelvin)
- X Distance from Inner Surface (Meter)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Temperature in Kelvin (K)

 Temperature Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Thermal Resistance in Kelvin per Watt (K/W)
 Thermal Resistance Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))

 Thermal Conductivity Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K)

 Heat Transfer Coefficient Unit Conversion

Check other formula lists

- Conduction in Cylinder Formulas
- Conduction in Plane Wall Formulas
- Conduction in Sphere Formulas
- Conduction Shape Factors for Different Configurations Formulas
- Other shapes Formulas
- Steady State Heat Conduction with Heat Generation Formulas
- Transient Heat Conduction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

4/24/2024 | 3:08:21 PM UTC

Please leave your feedback here...

