unitsconverters.com

Conduction in Cylinder Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Conduction in Cylinder Formulas

Conduction in Cylinder ©

1) Convection Resistance for Cylindrical Layer
$\mathrm{fx} \mathrm{R}_{\mathrm{th}}=\frac{1}{\mathrm{~h} \cdot 2 \cdot \pi \cdot \mathrm{R} \cdot \mathrm{l}_{\mathrm{cyl}}}$
ex $1.130362 \mathrm{~K} / \mathrm{W}=\frac{1}{2.2 \mathrm{~W} / \mathrm{m}^{2} * \mathrm{~K} \cdot 2 \cdot \pi \cdot 0.160 \mathrm{~m} \cdot 0.4 \mathrm{~m}}$
2) Heat Flow Rate through Cylindrical Composite Wall of 2 Layers
$\mathrm{fx} \mathrm{Q}=\frac{\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}}{\frac{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{1} \cdot \mathrm{l}_{\mathrm{cyl}}}+\frac{\ln \left(\frac{\mathrm{r}_{3}}{\mathrm{r}_{2}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{2} \cdot \mathrm{l}_{\mathrm{cyl}}}}$
ex $9.276513 \mathrm{~W}=\frac{305 \mathrm{~K}-300 \mathrm{~K}}{\frac{\ln \left(\frac{12 \mathrm{~m}}{2 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.6 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 0.4 \mathrm{~m}}+\frac{\ln \left(\frac{8 \mathrm{~m}}{2 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.2 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 0.4 \mathrm{~m}}}$
3) Heat Flow Rate through Cylindrical Composite Wall of 3 Layers
$f \mathrm{fx}=\frac{\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}}{\frac{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{1} \cdot \mathrm{l}_{\mathrm{cy} 1}}+\frac{\ln \left(\frac{\mathrm{r}_{3}}{\mathrm{r}_{2}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{2} \cdot \mathrm{l}_{\mathrm{cy}}}+\frac{\ln \left(\frac{\mathrm{r}_{4}}{\mathrm{r}_{3}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{3} \cdot \mathrm{l}_{\mathrm{cy}}}}$
ex

$$
8.408143 \mathrm{~W}=\frac{305 \mathrm{~K}-300 \mathrm{~K}}{\frac{\ln \left(\frac{12 \mathrm{~m}}{2 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.6 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}+\frac{\ln \left(\frac{8 \mathrm{~m}}{2 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1 \cdot 2 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}+\frac{\ln \left(\frac{14 \mathrm{~m}}{\mathrm{~m}}\right)}{2 \cdot \pi \cdot 4 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}}
$$

4) Heat Flow Rate through Cylindrical Wall
$f \mathbf{x} \quad \mathrm{Q}=\frac{\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}}{\frac{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k} \cdot \mathrm{l}_{\mathrm{cy} 1}}}$
ex $47.23903 \mathrm{~W}=\frac{305 \mathrm{~K}-300 \mathrm{~K}}{\frac{\ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}}$
5) Inner Surface Temperature of Cylindrical Wall in Conduction
$f \mathrm{fx} \mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{o}}+\frac{\mathrm{Q} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k} \cdot \mathrm{l}_{\mathrm{cyl}}}$
ex $313.2306 \mathrm{~K}=300 \mathrm{~K}+\frac{125 \mathrm{~W} \cdot \ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 10.18 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 0.4 \mathrm{~m}}$
6) Length of Cylindrical Wall for given Heat Flow Rate
$\mathrm{fx} \mathrm{l}_{\mathrm{cyl}}=\frac{\mathrm{Q} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k} \cdot\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)}$
ex $1.058447 \mathrm{~m}=\frac{125 \mathrm{~W} \cdot \ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot(305 \mathrm{~K}-300 \mathrm{~K})}$
7) Outer Surface Temperature of Cylindrical Composite Wall of 2 Layers
$\mathrm{fx} \mathrm{T}_{\mathrm{o}}=\mathrm{T}_{\mathrm{i}}-\mathrm{Q} \cdot\left(\frac{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{1} \cdot \mathrm{l}_{\mathrm{cyl}}}+\frac{\ln \left(\frac{\mathrm{r}_{3}}{\mathrm{r}_{2}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{2} \cdot \mathrm{l}_{\mathrm{cyl}}}\right)$
ex $237.6255 \mathrm{~K}=305 \mathrm{~K}-125 \mathrm{~W} \cdot\left(\frac{\ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.6 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}+\frac{\ln \left(\frac{8 \mathrm{~m}}{12 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.2 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 0.4 \mathrm{~m}}\right)$
8) Outer Surface Temperature of Cylindrical Wall given Heat Flow Rate
$f x T_{o}=T_{i}-\frac{Q \cdot \ln \left(\frac{r_{2}}{r_{1}}\right)}{2 \cdot \pi \cdot k \cdot l_{\mathrm{cyl}}}$
ex $291.7694 \mathrm{~K}=305 \mathrm{~K}-\frac{125 \mathrm{~W} \cdot \ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 10.18 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 0.4 \mathrm{~m}}$
9) Thermal Conductivity of Cylindrical Wall given Temperature Difference
$f \times \mathrm{k}=\frac{\mathrm{Q} \cdot \ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{l}_{\mathrm{cyl}} \cdot\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)}$
ex $26.93747 \mathrm{~W} /(\mathrm{m} * \mathrm{~K})=\frac{125 \mathrm{~W} \cdot \ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 0.4 \mathrm{~m} \cdot(305 \mathrm{~K}-300 \mathrm{~K})}$
10) Thermal Resistance for Radial Heat Conduction in Cylinders
$\mathrm{fx} \mathrm{R}_{\mathrm{th}}=\frac{\ln \left(\frac{\mathrm{r}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}}\right)}{2 \cdot \pi \cdot \mathrm{k} \cdot l_{\mathrm{cyl}}}$
ex $0.022974 \mathrm{~K} / \mathrm{W}=\frac{\ln \left(\frac{9 \mathrm{~m}}{5 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}$
11) Thickness of Cylindrical Wall to Maintain given Temperature Difference
$\mathbf{f x} \mathrm{t}=\mathrm{r}_{1} \cdot\left(e^{\frac{\left(\mathrm{T}_{\mathrm{i}}-T_{\mathrm{o}}\right) \cdot 2 \cdot \pi \cdot \mathrm{k} \cdot \mathrm{c}_{\mathrm{c} \mathrm{l}}}{Q}}-1\right)$
ex $1.426123 \mathrm{~m}=0.8 \mathrm{~m} \cdot\left(e^{\frac{(305 \mathrm{~K}-300 \mathrm{~K}) \cdot 2 \pi \cdot 1.10 .18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}{125 \mathrm{~m}}}-1\right)$
12) Total Thermal Resistance of 2 Cylindrical Resistances Connected in Series
$f \mathbf{x} \mathrm{R}_{\mathrm{th}}=\frac{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{1} \cdot \mathrm{l}_{\mathrm{cyl}}}+\frac{\ln \left(\frac{\mathrm{r}_{3}}{\mathrm{r}_{2}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{2} \cdot \mathrm{l}_{\mathrm{cyl}}}$
$\operatorname{ex} 0.538996 \mathrm{~K} / \mathrm{W}=\frac{\ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.6 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 0.4 \mathrm{~m}}+\frac{\ln \left(\frac{8 \mathrm{~m}}{12 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.2 \mathrm{~W} /(\mathrm{m} * \mathrm{~K}) \cdot 0.4 \mathrm{~m}}$
13) Total Thermal Resistance of 3 Cylindrical Resistances Connected in Series
$f \mathrm{fx} \mathrm{R}_{\mathrm{th}}=\frac{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{1} \cdot \mathrm{l}_{\mathrm{cyl}}}+\frac{\ln \left(\frac{\mathrm{r}_{3}}{\mathrm{r}_{2}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{2} \cdot \mathrm{l}_{\mathrm{cyl}}}+\frac{\ln \left(\frac{\mathrm{r}_{4}}{\mathrm{r}_{3}}\right)}{2 \cdot \pi \cdot \mathrm{k}_{3} \cdot \mathrm{l}_{\mathrm{cyl}}}$
Open Calculator
ex $0.594662 \mathrm{~K} / \mathrm{W}=\frac{\ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.6 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}+\frac{\ln \left(\frac{8 \mathrm{~m}}{12 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 1.2 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}+\frac{\ln \left(\frac{14 \mathrm{~m}}{8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 4 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}$
14) Total Thermal Resistance of Cylindrical Wall with Convection on Both Sides
$\mathrm{fx} \mathrm{R}_{\mathrm{th}}=\frac{1}{2 \cdot \pi \cdot \mathrm{r}_{1} \cdot \mathrm{l}_{\mathrm{cyl}} \cdot \mathrm{h}_{\mathrm{i}}}+\frac{\ln \left(\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right)}{2 \cdot \pi \cdot \mathrm{k} \cdot \mathrm{l}_{\mathrm{cyl}}}+\frac{1}{2 \cdot \pi \cdot \mathrm{r}_{2} \cdot \mathrm{l}_{\mathrm{cyl}} \cdot \mathrm{h}_{\mathrm{o}}}$
$0.477642 \mathrm{~K} / \mathrm{W}=\frac{1}{2 \cdot \pi \cdot 0.8 \mathrm{~m} \cdot 0.4 \mathrm{~m} \cdot 1.35 \mathrm{~W} / \mathrm{m}^{2} * \mathrm{~K}}+\frac{\ln \left(\frac{12 \mathrm{~m}}{0.8 \mathrm{~m}}\right)}{2 \cdot \pi \cdot 10.18 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right) \cdot 0.4 \mathrm{~m}}+\frac{1}{2 \cdot \pi \cdot 12 \mathrm{~m} \cdot 0.4 \mathrm{~m} \cdot 9.8}$

Variables Used

- h Convection heat transfer (Watt per Square Meter per Kelvin)
- $\mathbf{h}_{\mathbf{i}}$ Inside Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- $\mathbf{h}_{\mathbf{o}}$ External Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- \mathbf{k} Thermal Conductivity (Watt per Meter per K)
- \mathbf{k}_{1} Thermal Conductivity 1 (Watt per Meter per K)
- $\mathbf{k}_{\mathbf{2}}$ Thermal Conductivity 2 (Watt per Meter per K)
- \mathbf{k}_{3} Thermal Conductivity 3 (Watt per Meter per K)
- $\mathbf{I}_{\text {cyl }}$ Length of Cylinder (Meter)
- Q Heat Flow Rate (Watt)
- R Cylinder Radius (Meter)
- \mathbf{r}_{1} Radius 1 (Meter)
- $\mathbf{r}_{\mathbf{2}}$ Radius 2 (Meter)
- \mathbf{r}_{3} Radius 3 (Meter)
- \mathbf{r}_{4} Radius 4 (Meter)
- $\mathbf{r}_{\mathbf{i}}$ Inner Radius (Meter)
- $\mathbf{r}_{\mathbf{o}}$ Outer Radius (Meter)
- $\mathbf{R}_{\text {th }}$ Thermal Resistance (Kelvin per Watt)
- t Thickness (Meter)
- $\mathbf{T}_{\mathbf{i}}$ Inner Surface Temperature (Kelvin)
- $\mathbf{T}_{\mathbf{0}}$ Outer Surface Temperature (Kelvin)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: e, 2.71828182845904523536028747135266249

Napier's constant

- Function: $\mathbf{I n}, \operatorname{In}($ Number $)$

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Temperature in Kelvin (K) Temperature Unit Conversion
- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Thermal Resistance in Kelvin per Watt (K/W)

Thermal Resistance Unit Conversion

- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))

Thermal Conductivity Unit Conversion

- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K) Heat Transfer Coefficient Unit Conversion

Check other formula lists

- Conduction in Cylinder Formulas
- Conduction in Plane Wall Formulas
- Conduction in Sphere Formulas
- Conduction Shape Factors for Different Configurations Formulas
- Other shapes Formulas \longleftarrow
- Steady State Heat Conduction with Heat Generation Formulas
- Transient Heat Conduction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

