unitsconverters.com

Rolling Process Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Rolling Process Formulas

Rolling Process

Analysis at Entry Region

1) Mean Yield Shear Stress given Pressure on Entry Side
$f \mathrm{fx} \mathrm{S}_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{en}} \cdot \frac{\mathrm{h}_{\text {in }}}{\mathrm{h}_{\mathrm{e}}}}{\exp \left(\mu_{\mathrm{rp}} \cdot\left(\mathrm{H}_{\mathrm{in}}-H_{\mathrm{x}}\right)\right)}$
ex $4359.697 \mathrm{~Pa}=\frac{0.0000099 \mathrm{~N} / \mathrm{mm}^{2} \cdot \frac{3.5 \mathrm{~mm}}{0.011 \mathrm{~mm}}}{\exp (0.5 \cdot(3.35-4))}$
2) Pressure Acting on Rolls from Entry Side
$f x$
Open Calculatore
$\mathrm{P}_{\mathrm{en}}=\mathrm{S}_{\mathrm{e}} \cdot \frac{\mathrm{h}_{\mathrm{e}}}{\mathrm{h}_{\mathrm{in}}} \cdot \exp \left(\mu_{\mathrm{rp}} \cdot\left(2 \cdot \sqrt{\frac{\mathrm{R}_{\text {roller }}}{\mathrm{h}_{\mathrm{f}}}} \cdot a \tan \left(\Theta_{\mathrm{r}} \cdot \sqrt{\frac{\mathrm{R}_{\text {roller }}}{\mathrm{h}_{\mathrm{f}}}}\right)-2 \cdot \sqrt{\frac{\mathrm{R}_{\text {roller }}}{\mathrm{h}_{\mathrm{f}}}} \cdot a \tan \left(\alpha_{\mathrm{k}}\right.\right.\right.$
ex
$3.5 \mathrm{E}^{\wedge}-6 \mathrm{~N} / \mathrm{mm}^{2}=4359.69 \mathrm{~Pa} \cdot \frac{0.011 \mathrm{~mm}}{3.5 \mathrm{~mm}} \cdot \exp \left(0.5 \cdot\left(2 \cdot \sqrt{\frac{104 \mathrm{~mm}}{7.5 \mathrm{~mm}}} \cdot a \tan \left(18.5^{\circ} \cdot \sqrt{\frac{104 \mathrm{~mm}}{7.5 \mathrm{~mm}}}\right)-2 \cdot \sqrt{\frac{10}{7 .!}}\right.\right.$
3) Pressure on Rolls given H (Entry Side)
$f \mathrm{f} \mathrm{P}_{\mathrm{en}}=\mathrm{S}_{\mathrm{e}} \cdot \frac{\mathrm{h}_{\mathrm{e}}}{\mathrm{h}_{\mathrm{in}}} \cdot \exp \left(\mu_{\mathrm{rp}} \cdot\left(\mathrm{H}_{\mathrm{in}}-\mathrm{H}_{\mathrm{x}}\right)\right)$
ex $9.9 \mathrm{E}^{\wedge}-6 \mathrm{~N} / \mathrm{mm}^{2}=4359.69 \mathrm{~Pa} \cdot \frac{0.011 \mathrm{~mm}}{3.5 \mathrm{~mm}} \cdot \exp (0.5 \cdot(3.35-4))$
4) Thickness of Stock at given Point on Entry Side
$f \mathbf{f x} \mathrm{~h}_{\mathrm{e}}=\frac{\mathrm{P}_{\mathrm{en}} \cdot \mathrm{h}_{\text {in }}}{\mathrm{S}_{\mathrm{e}} \cdot \exp \left(\mu_{\mathrm{rp}} \cdot\left(\mathrm{H}_{\text {in }}-\mathrm{H}_{\mathrm{x}}\right)\right)}$
ex $0.011 \mathrm{~mm}=\frac{0.0000099 \mathrm{~N} / \mathrm{mm}^{2} \cdot 3.5 \mathrm{~mm}}{4359.69 \mathrm{~Pa} \cdot \exp (0.5 \cdot(3.35-4))}$

Analysis at Exit Region

5) Mean Yield Shear Stress using Pressure on Exit Side
$f \mathrm{fx} \mathrm{S}_{\mathrm{y}}=\frac{\mathrm{P}_{\text {rolls }} \cdot \mathrm{h}_{\mathrm{ft}}}{\mathrm{h}_{\mathrm{x}} \cdot \exp \left(\mu_{\mathrm{r}} \cdot \mathrm{H}\right)}$
ex $22027.01 \mathrm{~Pa}=\frac{0.000190 \mathrm{~N} / \mathrm{mm}^{2} \cdot 7.3 \mathrm{~mm}}{0.003135 \mathrm{~mm} \cdot \exp (0.6 \cdot 5)}$
6) Pressure Acting on Rolls in Exit Region
$f \mathrm{f} \mathrm{P}_{\mathrm{ex}}=\mathrm{S}_{\mathrm{y}} \cdot \frac{\mathrm{h}_{\mathrm{x}}}{\mathrm{h}_{\mathrm{ft}}} \cdot \exp \left(\mu_{\mathrm{r}} \cdot 2 \cdot \sqrt{\frac{\mathrm{R}_{\mathrm{roll}}}{\mathrm{h}_{\mathrm{ft}}}} \cdot a \tan \left(\Theta_{\mathrm{r}} \cdot \sqrt{\frac{\mathrm{R}_{\mathrm{roll}}}{\mathrm{h}_{\mathrm{ft}}}}\right)\right)$
$\operatorname{ex} 0.000459 \mathrm{~N} / \mathrm{mm}^{2}=22027.01 \mathrm{~Pa} \cdot \frac{0.003135 \mathrm{~mm}}{7.3 \mathrm{~mm}} \cdot \exp \left(0.6 \cdot 2 \cdot \sqrt{\frac{100 \mathrm{~mm}}{7.3 \mathrm{~mm}}} \cdot a \tan \left(18.5^{\circ} \cdot \sqrt{\frac{100 \mathrm{~mm}}{7.3 \mathrm{~mm}}}\right)\right)$
7) Pressure on Rolls given \mathbf{H} (Exit Side)
$f \mathrm{fx} \mathrm{P}_{\text {rolls }}=\mathrm{S}_{\mathrm{y}} \cdot \frac{\mathrm{h}_{\mathrm{x}}}{\mathrm{h}_{\mathrm{ft}}} \cdot \exp \left(\mu_{\mathrm{r}} \cdot \mathrm{H}\right)$
ex $0.00019 \mathrm{~N} / \mathrm{mm}^{2}=22027.01 \mathrm{~Pa} \cdot \frac{0.003135 \mathrm{~mm}}{7.3 \mathrm{~mm}} \cdot \exp (0.6 \cdot 5)$
8) Thickness of Stock at given Point on Exit Side
$f \mathrm{f} \mathrm{h}_{\mathrm{x}}=\frac{\mathrm{P}_{\text {rolls }} \cdot \mathrm{h}_{\mathrm{ft}}}{\mathrm{S}_{\mathrm{y}} \cdot \exp \left(\mu_{\mathrm{r}} \cdot \mathrm{H}\right)}$
ex $0.003135 \mathrm{~mm}=\frac{0.000190 \mathrm{~N} / \mathrm{mm}^{2} \cdot 7.3 \mathrm{~mm}}{22027.01 \mathrm{~Pa} \cdot \exp (0.6 \cdot 5)}$

Rolling Analysis

9) Angle Subtended by Neutral Point
$f \mathrm{x} \varphi_{\mathrm{n}}=\sqrt{\frac{\mathrm{h}_{\mathrm{fi}}}{\mathrm{R}}} \cdot \tan \left(\frac{\mathrm{H}_{\mathrm{n}}}{2} \cdot \sqrt{\frac{\mathrm{~h}_{\mathrm{fi}}}{\mathrm{R}}}\right)$
ex $5.518163^{\circ}=\sqrt{\frac{7.2 \mathrm{~mm}}{102 \mathrm{~mm}}} \cdot \tan \left(\frac{2.617882}{2} \cdot \sqrt{\frac{7.2 \mathrm{~mm}}{102 \mathrm{~mm}}}\right)$

10) Bite Angle

$f \mathrm{x} \alpha_{\mathrm{b}}=a \cos \left(1-\frac{\mathrm{h}}{2 \cdot \mathrm{R}}\right)$
ex $30.03884^{\circ}=a \cos \left(1-\frac{27.4 \mathrm{~mm}}{2 \cdot 102 \mathrm{~mm}}\right)$
11) Factor H at Neutral Point
f. $H_{n}=\frac{H_{i}-\frac{\ln \left(\frac{h_{i}}{h_{\text {fi }}}\right)}{\mu_{f}}}{2}$
$\operatorname{ex} 2.617882=\frac{3.36-\frac{\ln \left(\frac{3.4 \mathrm{~mm}}{7,2 \mathrm{~mm}}\right)}{0.4}}{2}$
12) Factor H used in Rolling Calculations
fx $\mathrm{H}_{\mathrm{r}}=2 \cdot \sqrt{\frac{\mathrm{R}}{\mathrm{h}_{\mathrm{fi}}}} \cdot a \tan \left(\sqrt{\frac{\mathrm{R}}{\mathrm{h}_{\mathrm{fi}}}}\right) \cdot \Theta_{\mathrm{r}}$
ex $3.186783=2 \cdot \sqrt{\frac{102 \mathrm{~mm}}{7.2 \mathrm{~mm}}} \cdot a \tan \left(\sqrt{\frac{102 \mathrm{~mm}}{7.2 \mathrm{~mm}}}\right) \cdot 18.5^{\circ}$
13) Initial Stock Thickness given Pressure on Rolls
fx $\mathrm{h}_{\mathrm{t}}=\frac{\mathrm{S} \cdot \mathrm{h}_{\mathrm{s}} \cdot \exp \left(\mu_{\mathrm{f}} \cdot\left(\mathrm{H}_{\mathrm{i}}-\mathrm{H}_{\mathrm{r}}\right)\right)}{\mathrm{P}}$
ex $1.047159 \mathrm{~mm}=\frac{58730 \mathrm{~Pa} \cdot 0.00313577819561353 \mathrm{~mm} \cdot \exp (0.4 \cdot(3.36-3.18))}{0.000189 \mathrm{~N} / \mathrm{mm}^{2}}$
14) Maximum Reduction in Thickness Possible
fx $\Delta t=\mu_{\mathrm{f}}^{2} \cdot R$
ex $16.32 \mathrm{~mm}=(0.4)^{2} \cdot 102 \mathrm{~mm}$
15) Pressure Considering Rolling Similar to Plane-Strain-Upsetting Process
$f \mathrm{f} \mathrm{P}_{\mathrm{r}}=\mathrm{b} \cdot \frac{2 \cdot \sigma}{\sqrt{3}} \cdot\left(1+\frac{\mu_{\mathrm{sf}} \cdot \mathrm{R} \cdot \frac{\pi}{180} \cdot \alpha_{\mathrm{b}}}{2 \cdot\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{fi}}\right)}\right) \cdot \mathrm{R} \cdot \frac{\pi}{180} \cdot \alpha_{\mathrm{b}}$
ex $3.3 \mathrm{E}^{\wedge}-5 \mathrm{~N} / \mathrm{mm}^{2}=14.5 \mathrm{~mm} \cdot \frac{2 \cdot 2.1 \mathrm{~N} / \mathrm{mm}^{2}}{\sqrt{3}} \cdot\left(1+\frac{0.41 \cdot 102 \mathrm{~mm} \cdot \frac{\pi}{180} \cdot 30.00^{\circ}}{2 \cdot(3.4 \mathrm{~mm}+7.2 \mathrm{~mm})}\right) \cdot 102 \mathrm{~mm} \cdot \frac{\pi}{180} \cdot 30.00^{\circ}$

16) Projected Area

$f \mathbf{f x} A=w \cdot(R \cdot \Delta t)^{0.5}$
ex $1.224 \mathrm{~cm}^{2}=3 \mathrm{~mm} \cdot(102 \mathrm{~mm} \cdot 16.32 \mathrm{~mm})^{0.5}$
17) Projected Length
$f \mathrm{f} L=(\mathrm{R} \cdot \Delta \mathrm{t})^{0.5}$
ex $40.8 \mathrm{~mm}=(102 \mathrm{~mm} \cdot 16.32 \mathrm{~mm})^{0.5}$
18) Total Elongation of Stock
$f x E=\frac{A_{i}}{A_{f}}$
ex $6.666667=\frac{60 \mathrm{~cm}^{2}}{9 \mathrm{~cm}^{2}}$

Variables Used

- A Projected Area (Square Centimeter)
- \mathbf{A}_{f} Final Cross Sectional Area (Square Centimeter)
- $\mathbf{A}_{\mathbf{i}}$ Initial Cross Sectional Area (Square Centimeter)
- b Strip Width of Spiral Spring (Millimeter)
- E Total Stock or Workpiece Elongation
- h Height (Millimeter)
- H Factor H at given Point on Workpiece
- $\mathbf{h}_{\mathbf{e}}$ Thickness at Entry (Millimeter)
- $\mathbf{h}_{\mathbf{f}}$ Final Thickness after Rolling (Millimeter)
- \mathbf{h}_{fi} Thickness after Rolling (Millimeter)
- \mathbf{h}_{ft} Final Thickness (Millimeter)
- $\mathbf{h}_{\mathbf{i}}$ Thickness before Rolling (Millimeter)
- $\mathbf{H}_{\mathbf{i}}$ Factor H at Entry Point on Workpiece
- $\mathbf{h}_{\mathbf{i n}}$ Initial Thickness (Millimeter)
- $\mathbf{H}_{\text {in }}$ H Factor at Entry Point on Workpiece
- $\mathbf{H}_{\mathbf{n}}$ Factor H at Neutral Point
- H_{r} Factor H in Rolling Calculation
- $\mathbf{h}_{\mathbf{s}}$ Thickness at given Point (Millimeter)
- $\mathbf{h}_{\mathbf{t}}$ Initial Stock Thickness (Millimeter)
- $\mathbf{h}_{\mathbf{x}}$ Thickness at the given Point (Millimeter)
- $\mathrm{H}_{\mathbf{x}}$ Factor H at a Point on Workpiece
- L Projected Length (Millimeter)
- P Pressure Acting on Rolls (Newton per Square Millimeter)
- $\mathbf{P e n}_{\text {en }}$ Pressure Acting at Entry (Newton per Square Millimeter)
- $\mathbf{P e x}_{\text {ex }}$ Pressure Acting on Exit (Newton per Square Millimeter)
- $\mathbf{P}_{\mathbf{r}}$ Pressure Acting while Rolling (Newton per Square Millimeter)
- Prolls Pressure on Roller (Newton per Square Millimeter)
- R Roller Radius (Millimeter)
- $\mathbf{R}_{\text {roll }}$ Roll Radius (Millimeter)
- $\mathbf{R}_{\text {roller }}$ Radius of Roller (Millimeter)
- S Mean Yield Shear Stress of Work Material (Pascal)
- $\mathbf{S}_{\mathbf{e}}$ Mean Yield Shear Stress (Pascal)
- $\mathrm{S}_{\mathbf{y}}$ Mean Yield Shear Stress at Exit (Pascal)
- w Width (Millimeter)
- $\boldsymbol{\alpha}_{\mathrm{b}}$ Bite Angle (Degree)
- $\boldsymbol{\alpha}_{\text {bite }}$ Angle of Bite (Degree)
- $\Delta \mathbf{t}$ Change in Thickness (Millimeter)
- Θ_{r} Angle made by Point Roll Center and Normal (Degree)
- μ_{f} Friction Coefficient in Rolling Analysis
- μ_{r} Friction Coefficient
- μ_{rp} Coefficient of Friction
- $\mu_{\mathbf{s f}}$ Frictional Shear Factor
- $\boldsymbol{\sigma}$ Flow Stress of Work Material (Newton per Square Millimeter)
- φ_{n} Angle subtended at Neutral Point (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: atan, atan(Number)

Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: exp, exp(Number)
n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: $\ln , \ln ($ Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: $\boldsymbol{\operatorname { t a n }}, \tan ($ Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Centimeter (cm²)

Area Unit Conversion

- Measurement: Pressure in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Pressure Unit Conversion
- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Stress in Pascal (Pa) Stress Unit Conversion

Check other formula lists

- Composite Materials Formulas
- Rolling Process Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

