

Bolted Joints Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

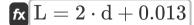
Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...



List of 10 Bolted Joints Formulas

Bolted Joints

1) Axial Length of Sleeve of Muff Coupling

Open Calculator

 $67 ext{mm} = 2 \cdot 27 ext{mm} + 0.013$

2) Diameter of Driving Shaft of Clamp Coupling given Length of Sleeve

fx
$$d=rac{L_{
m sh}}{3.5}$$

Open Calculator

$$27.14286 \mathrm{mm} = \frac{95 \mathrm{mm}}{3.5}$$

3) Diameter of Driving Shaft of Clamp Coupling given Outer diameter of Sleeve Halves

$$\mathrm{d}=rac{\mathrm{D_{so}}}{2.5}$$

Open Calculator

$$27.2 \text{mm} = \frac{68 \text{mm}}{2.5}$$

4) Diameter of Driving Shaft of Muff Coupling given Axial Length of Sleeve

fx $d = \frac{L - 0.013}{2}$

Open Calculator 🚰

 $27\mathrm{mm} = \frac{67\mathrm{mm} - 0.013}{2}$

5) Diameter of Driving Shaft of Muff Coupling given Outer Diameter of Sleeve

fx $d=rac{\mathrm{D_{so}}-0.013}{2}$

Open Calculator

 $27.5 \mathrm{mm} = rac{68 \mathrm{mm} - 0.013}{2}$

6) Length of Sleeve Halves of Clamp Coupling

fx $m [L_{sh} = 3.5 \cdot d]$

Open Calculator 🚰

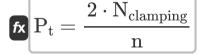
 $\texttt{ex} \ 94.5 \text{mm} = 3.5 \cdot 27 \text{mm}$

7) Outer Diameter of Sleeve Halves of Clamp Coupling

fx $m D_{so} = 2.5 \cdot d$

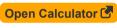
Open Calculator

 $\boxed{67.5 \mathrm{mm} = 2.5 \cdot 27 \mathrm{mm} }$



8) Outer Diameter of Sleeve of Muff Coupling

fx $\mathrm{D_{so}} = 2 \cdot \mathrm{d} + 0.013$


Open Calculator 🗗

- $\texttt{ex} \ 67 \text{mm} = 2 \cdot 27 \text{mm} + 0.013$
- 9) Tensile Force on Each Bolt of Clamp Coupling

Open Calculator

- $= 12000 N = \frac{2 \cdot 48000 N}{8}$
- 10) Tensile Force on Each Bolt of Clamp Coupling given Torque
- $\left| \mathbf{R} \right| \mathbf{P}_{\mathrm{t}} = rac{2 \cdot \mathbf{M}_{\mathrm{t}}}{\mu \cdot \mathbf{d} \cdot \mathbf{n}}$

 $= 12268.52 N = \frac{2 \cdot 397500 N^* mm}{0.3 \cdot 27 mm \cdot 8}$

Variables Used

- d Diameter of Driving Shaft for Coupling (Millimeter)
- D_{SO} Outer Diameter of Sleeve of Coupling (Millimeter)
- L Axial Length of Sleeve of Muff Coupling (Millimeter)
- L_{sh} Length of Sleeve Halves of Coupling (Millimeter)
- M_t Torque Transmitted by Coupling (Newton Millimeter)
- n Number of Bolts in Clamp Coupling
- N_{clamping} Clamping Force on Shaft for Clamp Coupling (Newton)
- Pt Tensile Force on Clamp Coupling Bolt (Newton)
- µ Coefficient of Friction for Clamp Coupling

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Force in Newton (N)

 Force Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion

Check other formula lists

Bolted Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

1/5/2024 | 9:09:15 AM UTC

Please leave your feedback here...

