
calculatoratoz.com

Rotational Energy Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Rotational Energy Formulas

Rotational Energy ©

1) Beta using Rotational Energy
$\mathrm{fx} \beta_{\mathrm{energy}}=2 \cdot \mathrm{I} \cdot \frac{\mathrm{E}_{\mathrm{rot}}}{[\mathrm{h}-]^{2}}$

Open Calculator

$$
\mathrm{ex} 3 \mathrm{E}^{\wedge} 70=2 \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot \frac{150 \mathrm{~J}}{[\mathrm{~h}-]^{2}}
$$

2) Beta using Rotational Level
$f \times \beta_{\text {levels }}=J \cdot(J+1)$
Open Calculator
ex $20=4 \cdot(4+1)$
3) Centrifugal Distortion Constant using Rotational Energy
$f \times \mathrm{DC}_{\mathrm{j}}=\frac{\mathrm{E}_{\mathrm{rot}}-(\mathrm{B} \cdot \mathrm{J} \cdot(\mathrm{J}+1))}{\mathrm{J}^{2}} \cdot\left((\mathrm{~J}+1)^{2}\right)$
Open Calculator

$$
\mathrm{ex}-1665.625=\frac{150 \mathrm{~J}-\left(60.8 \mathrm{~m}^{-1} \cdot 4 \cdot(4+1)\right)}{(4)^{2}} \cdot\left((4+1)^{2}\right)
$$

4) Energy of Rotational Transitions between Rotational Levels
$\mathrm{fx} \mathrm{E}_{\mathrm{RL}}=2 \cdot \mathrm{~B} \cdot(\mathrm{~J}+1)$
Open Calculator
ex $608 \mathrm{~J}=2 \cdot 60.8 \mathrm{~m}^{-1} \cdot(4+1)$
5) Rotational Constant given Moment of Inertia
$\mathrm{fx}_{\mathrm{X}} \mathrm{B}_{\mathrm{MI}}=\frac{[\mathrm{h}-]^{2}}{2 \cdot \mathrm{I}}$
Open Calculator
ex $4.9 \mathrm{E}^{\wedge}-69 \mathrm{~m}^{-1}=\frac{[\mathrm{h}-]^{2}}{2 \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}$
6) Rotational Constant using Energy of Transitions
$f \times \mathrm{B}_{\mathrm{ET}}=\frac{\mathrm{E}_{\mathrm{nu}}}{2 \cdot(\mathrm{~J}+1)}$
Open Calculator
ex $30 \mathrm{~m}^{-1}=\frac{300 \mathrm{~J}}{2 \cdot(4+1)}$

Open Calculator
$f x \mathrm{~B}_{\mathrm{RE}}=\frac{\mathrm{E}_{\mathrm{rot}}}{\mathrm{J} \cdot(\mathrm{J}+1)}$
$\mathrm{ex} 7.5 \mathrm{~m}^{-1}=\frac{150 \mathrm{~J}}{4 \cdot(4+1)}$
8) Rotational Constant using Wave number
$\mathrm{fx}_{\mathrm{x}} \mathrm{B}_{\text {wave_no }}=\mathrm{B} \sim \cdot[\mathrm{hP}] \cdot[\mathrm{c}]$

Open Calculator

ex $5 \mathrm{E}^{\wedge}-22 \mathrm{~m}^{-1}=2500 / \mathrm{m} \cdot[\mathrm{hP}] \cdot[\mathrm{c}]$
9) Rotational Energy
$f \times \mathrm{E}_{\text {rotational }}=\left([\mathrm{h}-]^{2}\right) \cdot \frac{\beta}{2 \cdot \mathrm{I}}$
Open Calculator
ex $3.5 \mathrm{E}^{\wedge}-68 \mathrm{~J}=\left([\mathrm{h}-]^{2}\right) \cdot \frac{7}{2 \cdot 1.125 \mathrm{~kg} \cdot \mathrm{~m}^{2}}$
10) Rotational Energy using Centrifugal Distortion
fx
Open Calculator
$\mathrm{E}_{\mathrm{rot} _\mathrm{CD}}=(\mathrm{B} \cdot \mathrm{J} \cdot(\mathrm{J}+1))-\left(\mathrm{DC} \cdot\left(\mathrm{J}^{2}\right) \cdot\left((\mathrm{J}+1)^{2}\right)\right)$

$$
\text { ex } 667616 \mathrm{~J}=\left(60.8 \mathrm{~m}^{-1} \cdot 4 \cdot(4+1)\right)-\left(-1666 \cdot\left((4)^{2}\right) \cdot\left((4+1)^{2}\right)\right)
$$

11) Rotational Energy using Rotational Constant
$f \mathrm{f} \mathrm{E}_{\mathrm{rot} _\mathrm{RC}}=\mathrm{B} \cdot \mathrm{J} \cdot(\mathrm{J}+1)$
Open Calculator
ex $1216 \mathrm{~J}=60.8 \mathrm{~m}^{-1} \cdot 4 \cdot(4+1)$

Variables Used

- B Rotational Constant (1 per Meter)
- $\mathbf{B E T}_{\text {ET }}$ Rotational Constant given ET (1 per Meter)
- $\mathbf{B}_{\text {MI }}$ Rotational Constant given MI (1 per Meter)
- Bre Rotational Constant given RE (1 per Meter)
- $B_{\text {wave_no }}$ Rotational Constant given Wave Number (1 per Meter)
- B~ Wave Number in Spectroscopy (1 per Meter)
- DC_{j} Centrifugal Distortion Constant given RE
- $E_{n u}$ Energy of Rotational Transitions (Joule)
- $E_{R L}$ Energy of Rotational Transitions between RL (Joule)
- Erot Rotational Energy (Joule)
- Erot_CD Rotational Energy given CD (Joule)
- Erot_RC Rotational Energy given RC (Joule)
- Erotational Energy for Rotation (Joule)
- I Moment of Inertia (Kilogram Square Meter)
- J Rotational Level
- $\boldsymbol{\beta}$ Beta in Schrodinger Equation
- $\boldsymbol{\beta}_{\text {energy }}$ Beta using Rotational Energy
- $\boldsymbol{\beta}_{\text {levels }}$ Beta using Rotational Level

Constants, Functions, Measurements used

- Constant: [c], 299792458.0 Meter/Second

Light speed in vacuum

- Constant: [hP], 6.626070040E-34 Kilogram Meter² / Second Planck constant
- Constant: [h-], [hP] / (2 * pi) Reduced Planck constant
- Measurement: Energy in Joule (J)

Energy Unit Conversion

- Measurement: Moment of Inertia in Kilogram Square Meter (kg•m²) Moment of Inertia Unit Conversion
- Measurement: Wave Number in 1 per Meter (1/m)

Wave Number Unit Conversion

- Measurement: Reciprocal Length in 1 per Meter (m^{-1})

Reciprocal Length Unit Conversion

Check other formula lists

- Angular Momentum and Velocity of Diatomic Molecule Formulas
- Bond Length Formulas
- Kinetic Energy for System Formulas ${ }^{[15}$
- Moment of Inertia Formulas
- Reduced Mass and Radius of Diatomic Molecule Formulas
- Rotational Energy Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

