
calculatoratoz.com

(1)

unitsconverters.com

Buoyancy And Floatation Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 24 Buoyancy And Floatation Formulas

Buoyancy And Floatation ©

Buoyancy Force and Center of Buoyancy ©

1) Buoyancy Force given Volume of Vertical Prism
$f x F_{\text {Buoyant }}=\omega \cdot \mathrm{V}$
Open Calculator
ex $44566.83 \mathrm{~N}=75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.59 \mathrm{~m}^{3}$
2) Buoyant Force on Entire Submerged Body $工$
$f \mathrm{fx} \mathrm{F}_{\text {Buoyant }}=\omega \cdot \mathrm{V}$
Open Calculator
ex $44566.83 \mathrm{~N}=75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.59 \mathrm{~m}^{3}$
3) Buoyant Force on Vertical Prism
$f \times F_{\text {Buoyant }}=\omega \cdot H_{\text {Pressurehead }} \cdot \mathrm{A}$
Open Calculator
ex $44944.51 \mathrm{~N}=75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.7 \mathrm{~m} \cdot 0.85 \mathrm{~m}^{2}$
4) Buoyant Force when Body Floats at between two Immiscible Fluids of Specific Weights
$f_{\mathrm{x}} \mathrm{F}_{\text {Buoyant }}=\left(\omega \cdot v_{1}+\omega_{1} \cdot v_{2}\right)$
Open Calculator
ex $53523.54 \mathrm{~N}=\left(75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.001 \mathrm{~m}^{3} / \mathrm{kg}+65500 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.816 \mathrm{~m}^{3} / \mathrm{kg}\right)$
5) Cross Sectional Area of Prism given Buoyancy Force
$f_{x} \mathrm{~A}=\frac{\mathrm{F}_{\text {Buoyant }}}{\omega \cdot \mathrm{H}_{\text {Pressurehead }}}$
ex $0.837433 \mathrm{~m}^{2}=\frac{44280 \mathrm{~N}}{75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.7 \mathrm{~m}}$
6) Cross Sectional Area of Prism given Volume of Vertical Prism dV

$$
\begin{aligned}
& f x A=\frac{V}{H_{\text {Pressurehead }}} \\
& e x 0.842857 \mathrm{~m}^{2}=\frac{0.59 \mathrm{~m}^{3}}{0.7 \mathrm{~m}}
\end{aligned}
$$

7) Pressure Head Difference given Buoyancy Force $\sqrt{\boxed{y}}$
$f \times H_{\text {Pressurehead }}=\frac{F_{\text {Buoyant }}}{\omega \cdot \mathrm{A}}$
Open Calculator
ex $0.68965 \mathrm{~m}=\frac{44280 \mathrm{~N}}{75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.85 \mathrm{~m}^{2}}$

Open Calculator
8) Pressure Head Difference given Volume of Vertical Prism dV
$f \times H_{\text {Pressurehead }}=\frac{V}{A}$
ex $0.694118 \mathrm{~m}=\frac{0.59 \mathrm{~m}^{3}}{0.85 \mathrm{~m}^{2}}$
9) Specific Weight pf Fluid given Buoyancy Force
$\mathrm{F}_{\text {Buoyant }}$
$f \mathbf{f x} \omega=\frac{\mathrm{F}_{\text {Buoyant }}}{\mathrm{H}_{\text {Pressurehead }} \cdot \mathrm{A}}$

Open Calculator

44280N
ex $74420.17 \mathrm{~N} / \mathrm{m}^{3}=\frac{44280 \mathrm{~N}}{0.7 \mathrm{~m} \cdot 0.85 \mathrm{~m}^{2}}$
10) Total Buoyant Force given Volumes of Elementary Prism Submerged in Fluids $\sqrt{\square}$
$\mathrm{fx}_{\mathrm{X}}^{\mathrm{F}_{\text {Buoyant }}=\left(\omega \cdot v_{1}+\omega_{1} \cdot v_{2}\right)}$
Open Calculator
ex $53523.54 \mathrm{~N}=\left(75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.001 \mathrm{~m}^{3} / \mathrm{kg}+65500 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.816 \mathrm{~m}^{3} / \mathrm{kg}\right)$
11) Volume of Submerged Body given Buoyant Force on Entire Submerged Body
> $\mathrm{fx} \mathrm{V}=\frac{\mathrm{F}_{\text {Buoyant }}}{}$
> ex $0.586203 \mathrm{~m}^{3}=\frac{44280 \mathrm{~N}}{75537 \mathrm{~N} / \mathrm{m}^{3}}$

Open Calculator
12) Volume of Vertical Prism
$f \mathrm{fx}=\mathrm{H}_{\text {Pressurehead }} \cdot \mathrm{A}$
ex $0.595 \mathrm{~m}^{3}=0.7 \mathrm{~m} \cdot 0.85 \mathrm{~m}^{2}$

Determination of Metacentric Height

13) Angle Made by Pendulum
$\mathbf{f x} \theta=a \tan \left(\frac{d}{l}\right)$
Open Calculator

$$
\text { ex } 71.56505^{\circ}=a \tan \left(\frac{150 \mathrm{~m}}{50 \mathrm{~m}}\right)
$$

14) Distance Moved by Pendulum on Horizontal scale
$f \mathrm{x} d=1 \cdot \tan (\theta)$
Open Calculator
ex $149.4342 \mathrm{~m}=50 \mathrm{~m} \cdot \tan \left(71.5^{\circ}\right)$
15) Length of Plumb Line
$\mathrm{fx}=\frac{\mathrm{d}}{\tan (\theta)}$
ex $50.1893 \mathrm{~m}=\frac{150 \mathrm{~m}}{\tan \left(71.5^{\circ}\right)}$

Metacentric Height for Floating Bodies Containing liquid ${ }^{(1)}$

16) Distance between Centre of Gravity of these Wedges
$f \mathrm{x} z=\frac{\mathrm{m}}{\omega \cdot \mathrm{V}}$
Open Calculator
ex $1.121911 \mathrm{~m}=\frac{50000 \mathrm{~N}^{*} \mathrm{~m}}{75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.59 \mathrm{~m}^{3}}$
17) Moment of Turning Couple due to Movement of Liquid
$\mathrm{fx} \mathrm{m}=(\omega \cdot \mathrm{V} \cdot \mathrm{z})$
ex $46795.17 \mathrm{~N}^{*} \mathrm{~m}=\left(75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 0.59 \mathrm{~m}^{3} \cdot 1.05 \mathrm{~m}\right)$
18) Volume of either Wedge
$f \times V=\frac{m}{\omega \cdot z}$
Open Calculator
ex $0.630407 \mathrm{~m}^{3}=\frac{50000 \mathrm{~N}^{*} \mathrm{~m}}{75537 \mathrm{~N} / \mathrm{m}^{3} \cdot 1.05 \mathrm{~m}}$

Stability of Submerged and Floating Bodies

19) Restoring Couple when Floating Body in Stable Equilibrium

$$
\mathrm{R}_{\text {Restoring Couple }}=\left(\mathrm{W}_{\text {body }} \cdot \mathrm{x} \cdot\left(\mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)\right)
$$

ex $12960 \mathrm{~N}^{*} \mathrm{~m}=\left(18 \mathrm{~N} \cdot 8 \mathrm{~m} \cdot\left(90^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)\right)$
20) Righting Couple when Floating Body in Unstable Equilibrium

fx

$\mathrm{R}_{\text {Righting Couple }}=\left(\mathrm{W}_{\text {body }} \cdot \mathrm{x} \cdot\left(\mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)\right)$
ex $12960 \mathrm{~N}^{*} \mathrm{~m}=\left(18 \mathrm{~N} \cdot 8 \mathrm{~m} \cdot\left(90^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)\right)$
21) Weight of Body given Restoring Couple
$f \times \mathrm{W}_{\text {body }}=\frac{\mathrm{R}_{\text {Restoring Couple }}}{\mathrm{x} \cdot\left(\mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)}$
Open Calculator
ex $18 \mathrm{~N}=\frac{12960 \mathrm{~N}^{*} \mathrm{~m}}{8 \mathrm{~m} \cdot\left(90^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)}$
22) Weight of Body given Righting Couple
$f x W_{\text {body }}=\frac{R_{\text {Righting Couple }}}{\mathrm{x} \cdot\left(\mathrm{D} \cdot\left(\frac{180}{\pi}\right)\right)}$
Open Calculator
ex $18.00139 \mathrm{~N}=\frac{12961 \mathrm{~N}^{*} \mathrm{~m}}{8 \mathrm{~m} \cdot\left(90^{\circ} \cdot\left(\frac{180}{\pi}\right)\right)}$

Time Period of Transverse Oscillation of a Floating Body 전

23) Radius of Gyration of Body given Time Period
$f \mathrm{x} \mathrm{k}_{\mathrm{G}}=\sqrt{\left(\left(\frac{\mathrm{T}}{2 \cdot \pi}\right)^{2}\right) \cdot([\mathrm{g}] \cdot \mathrm{GM})}$
ex $0.10385 \mathrm{~m}=\sqrt{\left(\left(\frac{5.38 \mathrm{~s}}{2 \cdot \pi}\right)^{2}\right) \cdot([\mathrm{g}] \cdot 0.0015 \mathrm{~m})}$
24) Time Period of One Complete Oscillations
$f \mathrm{x}=2 \cdot \pi \cdot\left(\frac{\mathrm{k}_{\mathrm{G}}^{2}}{[\mathrm{~g}] \cdot \mathrm{GM}}\right)^{\frac{1}{2}}$
ex $5.439553 \mathrm{~s}=2 \cdot \pi \cdot\left(\frac{(0.105 \mathrm{~m})^{2}}{[\mathrm{~g}] \cdot 0.0015 \mathrm{~m}}\right)^{\frac{1}{2}}$

Variables Used

- A Cross-Sectional Area of Body (Square Meter)
- d Distance Moved (Meter)
- D Angle Between Bodies (Degree)
- FBuoyant Buoyant Force (Newton)
- GM Metacentric Height (Meter)
- HPressurehead Difference in Pressure Head (Meter)
- $\mathbf{K}_{\mathbf{G}}$ Radius of Gyration of Body (Meter)
- I Length of Plumb Line (Meter)
- m Moment of turning Couple (Newton Meter)
- $\mathbf{R}_{\text {Restoring }}$ Couple Restoring Couple (Newton Meter)
- RRighting Couple Righting Couple (Newton Meter)
- T Time Period of Rolling (Second)
- V Volume of Body (Cubic Meter)
- W $\mathbf{W}_{\text {body }}$ Weight of Body (Newton)
- X Distance from submerged to Floating Body (Meter)
- z Distance between Center of Gravity of these Wedges (Meter)
- $\boldsymbol{\theta}$ Tiltting Angle of Body (Degree)
- \mathbf{v}_{1} Specific Volume at Point 1 (Cubic Meter per Kilogram)
- $\mathbf{v}_{\mathbf{2}}$ Specific Volume at Point 2 (Cubic Meter per Kilogram)
- $\boldsymbol{\omega}$ Specific Weight of body (Newton per Cubic Meter)
- $\boldsymbol{\omega}_{1}$ Specific Weight 2 (Newton per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665 Meter/Second² Gravitational acceleration on Earth
- Function: atan, atan(Number)

Inverse trigonometric tangent function

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Torque in Newton Meter (N*m)

Torque Unit Conversion

- Measurement: Specific Volume in Cubic Meter per Kilogram (m³/kg) Specific Volume Unit Conversion
- Measurement: Moment of Force in Newton Meter (N*m)

Moment of Force Unit Conversion $\sqrt{ }$

- Measurement: Specific Weight in Newton per Cubic Meter ($\mathrm{N} / \mathrm{m}^{3}$) Specific Weight Unit Conversion

Check other formula lists

- Buoyancy And Floatation Formulas
- Culverts Formulas
- Equations of Motion and Energy Equation Formulas $\sqrt{ }$
- Flow of Compressible Fluids Formulas
- Flow Over Notches and Weirs Formulas
- Fluid Pressure and Its Measurement Formulas
- Fundamentals of Fluid Flow Formulas ${ }^{[15}$
- Hydroelectric Power Generation Formulas
- Hydrostatic Forces on Surfaces Formulas
- Impact of Free Jets Formulas
- Impulse Momentum Equation And Its Applications Formulas
- Liquids in Relative Equilibrium Formulas
- Most Economical or Most Efficient Section of Channel Formulas
- Non-uniform Flow in Channels Formulas
- Properties of Fluid Formulas $\sqrt{\boxed{Z}}$
- Thermal Expansion of Pipe and Pipe Stresses Formulas \longleftarrow
- Uniform Flow in Channels Formulas ${ }^{2}$
- Water Power Engineering Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

