
calculatoratoz.com

unitsconverters.com

Fundamentals of Fluid Flow Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 71 Fundamentals of Fluid Flow Formulas

Fundamentals of Fluid Flow ©

Circulation and Vorticity 전

1) Area of Curve using Vorticity
$\Gamma \quad$ Open Calculator
$f \mathrm{f} A=\frac{\Gamma}{\Omega}$
ex $50 \mathrm{~m}^{2}=\frac{350 \mathrm{~m}^{2} / \mathrm{s}}{7 / \mathrm{s}}$
2) Circulation using Vorticity
$\mathrm{fx} \Gamma=\Omega \cdot \mathrm{A}$
Open Calculator
ex $350 \mathrm{~m}^{2} / \mathrm{s}=7 / \mathrm{s} \cdot 50 \mathrm{~m}^{2}$
3) Vorticity of Fluid Flows
fx $\Omega=\frac{\Gamma}{\mathrm{A}}$
ex $7 / \mathrm{s}=\frac{350 \mathrm{~m}^{2} / \mathrm{s}}{50 \mathrm{~m}^{2}}$

Continuity Equation ©

4) Cross Sectional Area at Section 1 for Steady Flow
$f \times A_{c s}=\frac{Q}{\rho_{1} \cdot V_{\text {Negativesurges }}}$
ex $16.83333 \mathrm{~m}^{2}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{0.02 \mathrm{~kg} / \mathrm{m}^{3} \cdot 3 \mathrm{~m} / \mathrm{s}}$

Open Calculatore
5) Cross Sectional Area at Section 2 given Flow at Section 1 for Steady Flow
$f_{\mathrm{x}} \mathrm{A}_{\mathrm{cs}}=\frac{Q}{\rho_{2} \cdot V_{2}}$
Open Calculator
ex $9.619048 \mathrm{~m}^{2}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{0.021 \mathrm{~kg} / \mathrm{m}^{3} \cdot 5 \mathrm{~m} / \mathrm{s}}$
6) Cross Sectional Area at Section given Discharge for Steady Incompressible Fluid
$f \mathrm{fx} \mathrm{A}_{\mathrm{cs}}=\frac{\mathrm{Q}}{\mathrm{u}_{\text {Fluid }}}$
ex $12.625 \mathrm{~m}^{2}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{0.08 \mathrm{~m} / \mathrm{s}}$
7) Discharge through Section for Steady Incompressible Fluid
$f \mathrm{x} Q=\mathrm{A}_{\mathrm{cs}} \cdot \mathrm{u}_{\text {Fluid }}$
Open Calculator
ex $1.04 \mathrm{~m}^{3} / \mathrm{s}=13 \mathrm{~m}^{2} \cdot 0.08 \mathrm{~m} / \mathrm{s}$
8) Mass Density at Section 1 for Steady Flow
$f \times \rho_{1}=\frac{Q}{A_{\mathrm{Cs}} \cdot V_{\text {Negativesurges }}}$
Open Calculator
ex $0.025897 \mathrm{~kg} / \mathrm{m}^{3}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{13 \mathrm{~m}^{2} \cdot 3 \mathrm{~m} / \mathrm{s}}$
9) Mass Density at Section 2 given Flow at Section 1 for Steady Flow

Open Calculator
ex $0.015538 \mathrm{~kg} / \mathrm{m}^{3}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{13 \mathrm{~m}^{2} \cdot 5 \mathrm{~m} / \mathrm{s}}$
10) Velocity at Section 1 for Steady Flow
$f_{x} u_{01}=\frac{Q}{A_{c s} \cdot \rho_{1}}$
ex $3.884615 \mathrm{~m} / \mathrm{s}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{13 \mathrm{~m}^{2} \cdot 0.02 \mathrm{~kg} / \mathrm{m}^{3}}$
11) Velocity at Section 2 given Flow at Section 1 for Steady Flow

$$
\mathrm{ex} 3.699634 \mathrm{~m} / \mathrm{s}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{13 \mathrm{~m}^{2} \cdot 0.021 \mathrm{~kg} / \mathrm{m}^{3}}
$$

12) Velocity at Section for Discharge through Section for Steady Incompressible Fluid
$f \mathrm{x} \mathrm{u}_{\text {Fluid }}=\frac{\mathrm{Q}}{\mathrm{A}_{\mathrm{cs}}}$
ex $0.077692 \mathrm{~m} / \mathrm{s}=\frac{1.01 \mathrm{~m}^{3} / \mathrm{s}}{13 \mathrm{~m}^{2}}$

Description of the Flow Pattern

13) Component of Velocity in X Direction using Slope of Streamline
$\mathrm{fx} u=\frac{\mathrm{v}}{\tan \left(\frac{\pi}{180} \cdot \theta\right)}$
ex $8.011511 \mathrm{~m} / \mathrm{s}=\frac{10 \mathrm{~m} / \mathrm{s}}{\tan \left(\frac{\pi}{180} \cdot 51.3\right)}$
14) Component of Velocity in Y Direction given Slope of Streamline
$f \mathrm{x} v=\mathrm{v} \cdot \tan \left(\frac{\pi}{180} \cdot \theta\right)$
Open Calculator
ex $9.985632 \mathrm{~m} / \mathrm{s}=8 \mathrm{~m} / \mathrm{s} \cdot \tan \left(\frac{\pi}{180} \cdot 51.3\right)$
15) Slope of Streamline
$f \mathbf{x} \theta=\arctan \left(\frac{\mathrm{v}}{\mathrm{u}}\right) \cdot\left(\frac{180}{\pi}\right)$
Open Calculator
ex $51.34019=\arctan \left(\frac{10 \mathrm{~m} / \mathrm{s}}{8 \mathrm{~m} / \mathrm{s}}\right) \cdot\left(\frac{180}{\pi}\right)$

Streamlines, Equipotential Lines and Flow Net

16) Component of Velocity in X Direction given Slope of Equipotential Line
$f \mathrm{x} u=\mathrm{v} \cdot \Phi$
ex $8 \mathrm{~m} / \mathrm{s}=10 \mathrm{~m} / \mathrm{s} \cdot 0.8$
17) Component of Velocity in X Direction using Slope of Streamline
$\mathrm{fx}_{\mathrm{x}} \mathrm{u}=\frac{\mathrm{v}}{\tan \left(\frac{\pi}{180} \cdot \theta\right)}$
$\operatorname{ex} 8.011511 \mathrm{~m} / \mathrm{s}=\frac{10 \mathrm{~m} / \mathrm{s}}{\tan \left(\frac{\pi}{180} \cdot 51.3\right)}$
18) Component of Velocity in Y Direction given Slope of Equipotential Line W
$\mathrm{fx}_{\mathrm{x}} \mathrm{v}=\frac{\mathrm{u}}{\Phi}$
ex $10 \mathrm{~m} / \mathrm{s}=\frac{8 \mathrm{~m} / \mathrm{s}}{0.8}$
19) Component of Velocity in Y Direction given Slope of Streamline
$\mathrm{fx} \mathrm{v}=\mathrm{u} \cdot \tan \left(\frac{\pi}{180} \cdot \theta\right)$
Open Calculator
ex $9.985632 \mathrm{~m} / \mathrm{s}=8 \mathrm{~m} / \mathrm{s} \cdot \tan \left(\frac{\pi}{180} \cdot 51.3\right)$
20) Slope of Equipotential Line
$\mathrm{fx}_{\mathrm{x}} \Phi=\frac{\mathrm{u}}{\mathrm{v}}$
Open Calculator ©
ex $0.8=\frac{8 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~m} / \mathrm{s}}$
21) Slope of Streamline
$\mathbf{f x}_{\mathrm{x}} \theta=\arctan \left(\frac{\mathrm{v}}{\mathrm{u}}\right) \cdot\left(\frac{180}{\pi}\right)$
Open Calculator
ex $51.34019=\arctan \left(\frac{10 \mathrm{~m} / \mathrm{s}}{8 \mathrm{~m} / \mathrm{s}}\right) \cdot\left(\frac{180}{\pi}\right)$

Torque Exerted on a Wheel with Radial Curved Vanes E

22) Angular Momentum at Inlet
$f_{\mathrm{x}} \mathrm{L}=\left(\frac{\mathrm{w}_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{f}}}{\mathrm{G}}\right) \cdot \mathrm{r}$
Open Calculator
ex $148.32 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s}=\left(\frac{12.36 \mathrm{~N} \cdot 40 \mathrm{~m} / \mathrm{s}}{10}\right) \cdot 3 \mathrm{~m}$
23) Angular Momentum at Outlet
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}=\left(\frac{\mathrm{w}_{\mathrm{f}} \cdot \mathrm{V}}{\mathrm{G}}\right) \cdot \mathrm{r}$
Open Calculator
ex $35.93052 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s}=\left(\frac{12.36 \mathrm{~N} \cdot 9.69 \mathrm{~m} / \mathrm{s}}{10}\right) \cdot 3 \mathrm{~m}$
24) Angular Velocity for Work Done on Wheel per Second
$\mathrm{fx} \omega=\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}} \cdot\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{r}+\mathrm{v} \cdot \mathrm{r}_{\mathrm{O}}\right)}$
Open Calculator
ex $13.35424 \mathrm{rad} / \mathrm{s}=\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N} \cdot(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m}+9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m})}$

25) Efficiency of System

$f \mathrm{fx}=\left(1-\left(\frac{\mathrm{v}}{\mathrm{v}_{\mathrm{f}}}\right)^{2}\right)$
ex $0.941315=\left(1-\left(\frac{9.69 \mathrm{~m} / \mathrm{s}}{40 \mathrm{~m} / \mathrm{s}}\right)^{2}\right)$
26) Initial Velocity for Work Done if Jet leaves in Motion of Wheel

ex $54.37042 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{2209 \mathrm{~W} \cdot 10}{12.36 \mathrm{~N}}\right)+(9.69 \mathrm{~m} / \mathrm{s} \cdot 40 \mathrm{~m} / \mathrm{s})}{40 \mathrm{~m} / \mathrm{s}}$
27) Initial Velocity given Power Delivered to Wheel \leftrightarrows
$\mathbf{f x} u=\left(\left(\frac{\mathrm{P}_{\mathrm{dc}} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{f}}}\right)-(\mathrm{v})\right)$
ex $34.99042 \mathrm{~m} / \mathrm{s}=\left(\left(\frac{2209 \mathrm{~W} \cdot 10}{12.36 \mathrm{~N} \cdot 40 \mathrm{~m} / \mathrm{s}}\right)-(9.69 \mathrm{~m} / \mathrm{s})\right)$
28) Initial Velocity when Work Done at Vane Angle is 90 and Velocity is Zero
$\mathrm{fx}_{\mathrm{x}} \mathrm{u}=\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{f}}}$
ex $78.8835 \mathrm{~m} / \mathrm{s}=\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N} \cdot 40 \mathrm{~m} / \mathrm{s}}$
29) Mass of Fluid Striking Vane per Second $\boxed{\boxed{ }}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{m}_{\mathrm{f}}=\frac{\mathrm{W}_{\mathrm{f}}}{\mathrm{G}}$
Open Calculator ©
ex $1.236 \mathrm{~kg}=\frac{12.36 \mathrm{~N}}{10}$
30) Power Delivered to Wheel
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{dc}}=\left(\frac{\mathrm{w}_{\mathrm{f}}}{\mathrm{G}}\right) \cdot\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}+\mathrm{v} \cdot \mathrm{v}_{\mathrm{f}}\right)$
Open Calculator
ex $2209.474 \mathrm{~W}=\left(\frac{12.36 \mathrm{~N}}{10}\right) \cdot(40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s}+9.69 \mathrm{~m} / \mathrm{s} \cdot 40 \mathrm{~m} / \mathrm{s})$
31) Radius at Inlet for Work Done on Wheel per Second
$f_{x} r=\frac{\left(\frac{w \cdot G}{w_{f} \cdot \omega}\right)-\left(v \cdot r_{O}\right)}{v_{f}}$
$\mathrm{ex}^{3.160961 \mathrm{~m}=\frac{\left(\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N} \cdot 13 \mathrm{rad} / \mathrm{s}}\right)-(9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m})}{40 \mathrm{~m} / \mathrm{s}}}$
32) Radius at Inlet with Known Torque by Fluid

$$
\begin{aligned}
& f \mathbf{f x}=\frac{\left(\frac{\tau \cdot G}{\mathrm{w}_{\mathrm{f}}}\right)+\left(\mathrm{v} \cdot \mathrm{r}_{\mathrm{O}}\right)}{\mathrm{v}_{\mathrm{f}}} \\
& \mathbf{e x} 8.813149 \mathrm{~m}=\frac{\left(\frac{292 \mathrm{~N}^{*} \mathrm{~m} \cdot 10}{12.36 \mathrm{~N}}\right)+(9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m})}{40 \mathrm{~m} / \mathrm{s}}
\end{aligned}
$$

33) Radius at Outlet for Torque Exerted by Fluid
$f \mathrm{x} \mathrm{r}_{\mathrm{O}}=\frac{\left(\frac{\tau \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}}}\right)-\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{r}\right)}{\mathrm{v}}$
ex $11.99649 \mathrm{~m}=\frac{\left(\frac{292 \mathrm{~N}^{*} \mathrm{~m} \cdot 10}{12.36 \mathrm{~N}}\right)-(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m})}{9.69 \mathrm{~m} / \mathrm{s}}$
34) Radius at Outlet for Work Done on Wheel per Second
$f_{x} r_{\mathrm{O}}=\frac{\left(\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}} \cdot \omega}\right)-\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{r}\right)}{\mathrm{v}}$
Open Calculator
ex $12.66444 \mathrm{~m}=\frac{\left(\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N} \cdot 13 \mathrm{rad} / \mathrm{s}}\right)-(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m})}{9.69 \mathrm{~m} / \mathrm{s}}$
35) Speed of Wheel given Tangential Velocity at Inlet Tip of Vane
$\mathrm{fx} \Omega=\frac{\mathrm{v}_{\text {tangential }} \cdot 60}{2 \cdot \pi \cdot \mathrm{r}}$
Open Calculator
ex $3.183099 \mathrm{rev} / \mathrm{s}=\frac{60 \mathrm{~m} / \mathrm{s} \cdot 60}{2 \cdot \pi \cdot 3 \mathrm{~m}}$
36) Speed of Wheel given Tangential Velocity at Outlet Tip of Vane
$\mathrm{fx}_{\mathrm{x}} \Omega=\frac{\mathrm{v}_{\text {tangential }} \cdot 60}{2 \cdot \pi \cdot \mathrm{r}_{\mathrm{O}}}$
Open Calculator
ex $0.795775 \mathrm{rev} / \mathrm{s}=\frac{60 \mathrm{~m} / \mathrm{s} \cdot 60}{2 \cdot \pi \cdot 12 \mathrm{~m}}$
37) Torque Exerted by Fluid
$\mathrm{ff}_{\mathrm{x}} \tau=\left(\frac{\mathrm{w}_{\mathrm{f}}}{\mathrm{G}}\right) \cdot\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{r}+\mathrm{v} \cdot \mathrm{r}_{\mathrm{O}}\right)$
Open Calculator
$\mathrm{ex} 292.0421 \mathrm{~N}^{*} \mathrm{~m}=\left(\frac{12.36 \mathrm{~N}}{10}\right) \cdot(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m}+9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m})$
38) Velocity at Point given Efficiency of System
$f_{\mathrm{x}} \mathrm{v}=\sqrt{1-\eta} \cdot \mathrm{v}_{\mathrm{f}}$
Open Calculator
ex $17.88854 \mathrm{~m} / \mathrm{s}=\sqrt{1-0.80} \cdot 40 \mathrm{~m} / \mathrm{s}$
39) Velocity for Work Done if there is no Loss of Energy
$f \mathbf{x} \mathrm{v}_{\mathrm{f}}=\sqrt{\left(\frac{\mathrm{w} \cdot 2 \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}}}\right)+\mathrm{v}^{2}}$
Open Calculator 厄
ex $80.02859 \mathrm{~m} / \mathrm{s}=\sqrt{\left(\frac{3.9 \mathrm{KJ} \cdot 2 \cdot 10}{12.36 \mathrm{~N}}\right)+(9.69 \mathrm{~m} / \mathrm{s})^{2}}$
40) Velocity given Angular Momentum at Inlet
$f x v_{f}=\frac{L \cdot G}{W_{f} \cdot r}$
Open Calculator
ex $67.42179 \mathrm{~m} / \mathrm{s}=\frac{250 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s} \cdot 10}{12.36 \mathrm{~N} \cdot 3 \mathrm{~m}}$
41) Velocity given Angular Momentum at Outlet $\boxed{\square}$
$\mathrm{fx} \mathrm{v}=\frac{\mathrm{T}_{\mathrm{m}} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}} \cdot \mathrm{r}}$
ex
$10.38296 \mathrm{~m} / \mathrm{s}=\frac{38.5 \mathrm{~kg} * \mathrm{~m} / \mathrm{s} \cdot 10}{12.36 \mathrm{~N} \cdot 3 \mathrm{~m}}$
42) Velocity given Efficiency of System
$f \mathrm{x} \mathrm{v}_{\mathrm{f}}=\frac{\mathrm{v}}{\sqrt{1-\eta}}$
Open Calculator
ex $21.6675 \mathrm{~m} / \mathrm{s}=\frac{9.69 \mathrm{~m} / \mathrm{s}}{\sqrt{1-0.80}}$

Radius of the Wheel

43) Radius of Wheel for Tangential Velocity at Inlet Tip of Vane

$$
\mathrm{fx} \mathrm{r}=\frac{\mathrm{V}}{\frac{2 \cdot \pi \cdot \Omega}{60}}
$$

$$
\mathrm{ex} 7.012873 \mathrm{~m}=\frac{9.69 \mathrm{~m} / \mathrm{s}}{\frac{2 \cdot \pi \cdot 2.1 \mathrm{rev} / \mathrm{s}}{60}}
$$

44) Radius of Wheel for Tangential Velocity at Outlet Tip of Vane
$\mathrm{fx} \mathrm{r}=\frac{\mathrm{V}_{\text {tangential }}}{\frac{2 \cdot \pi \cdot \Omega}{60}}$

$$
\text { ex } 4.547284 \mathrm{~m}=\frac{60 \mathrm{~m} / \mathrm{s}}{\frac{2 \cdot \pi \cdot 2.1 \mathrm{rev} / \mathrm{s}}{60}}
$$

45) Radius of Wheel given Angular Momentum at Inlet
$\mathbf{f x} \mathbf{r}=\frac{\mathrm{L}}{\frac{\mathrm{w}_{\mathrm{f}} \cdot v_{f}}{G}}$
Open Calculator
ex $5.056634 \mathrm{~m}=\frac{250 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s}}{\frac{12.36 \mathrm{~N} \cdot 40 \mathrm{~m} / \mathrm{s}}{10}}$

Tangential momentum and Tangential velocity

46) Tangential Momentum of Fluid Striking Vanes at Inlet
$f_{\mathrm{x}} \mathrm{T}_{\mathrm{m}}=\frac{\mathrm{w}_{\mathrm{f}} \cdot \mathrm{v}_{\mathrm{f}}}{\mathrm{G}}$
Open Calculator

$$
\text { ex } 49.44 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s}=\frac{12.36 \mathrm{~N} \cdot 40 \mathrm{~m} / \mathrm{s}}{10}
$$

47) Tangential Momentum of Fluid Striking Vanes at Outlet
$f \mathrm{x} \mathrm{T}_{\mathrm{m}}=\frac{\mathrm{W}_{\mathrm{f}} \cdot \mathrm{v}}{\mathrm{G}}$
ex $11.97684 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s}=\frac{12.36 \mathrm{~N} \cdot 9.69 \mathrm{~m} / \mathrm{s}}{10}$
48) Tangential Velocity at Inlet Tip of Vane
$\mathrm{fx} \mathrm{v}_{\text {tangential }}=\left(\frac{2 \cdot \pi \cdot \Omega}{60}\right) \cdot \mathrm{r}$
ex $39.58407 \mathrm{~m} / \mathrm{s}=\left(\frac{2 \cdot \pi \cdot 2.1 \mathrm{rev} / \mathrm{s}}{60}\right) \cdot 3 \mathrm{~m}$

49) Tangential Velocity at Outlet Tip of Vane

$\mathrm{fx} \mathrm{v}_{\text {tangential }}=\left(\frac{2 \cdot \pi \cdot \Omega}{60}\right) \cdot \mathrm{r}$
Open Calculator
ex $39.58407 \mathrm{~m} / \mathrm{s}=\left(\frac{2 \cdot \pi \cdot 2.1 \mathrm{rev} / \mathrm{s}}{60}\right) \cdot 3 \mathrm{~m}$
50) Velocity given Tangential Momentum of Fluid Striking Vanes at Inlet
$f \mathrm{x} u=\frac{\mathrm{T}_{\mathrm{m}} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}}}$
Open Calculator
ex $31.14887 \mathrm{~m} / \mathrm{s}=\frac{38.5 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s} \cdot 10}{12.36 \mathrm{~N}}$
51) Velocity given Tangential Momentum of Fluid Striking Vanes at Outlet E
$f_{x} u=\frac{T_{m} \cdot G}{w_{f}}$
ex $31.14887 \mathrm{~m} / \mathrm{s}=\frac{38.5 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s} \cdot 10}{12.36 \mathrm{~N}}$

Velocity at Inlet

52) Velocity at Inlet given Torque by Fluid

$\mathrm{fx}_{\mathrm{x}} \mathrm{v}_{\mathrm{f}}=\frac{\left(\frac{\tau \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}}}\right)+(\mathrm{v} \cdot \mathrm{r})}{\mathrm{r}_{\mathrm{O}}}$

$$
22.10966 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{292 \mathrm{~N}^{*} \mathrm{~m} \cdot 10}{12.36 \mathrm{~N}}\right)+(9.69 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m})}{12 \mathrm{~m}}
$$

53) Velocity at Inlet given Work Done on Wheel
$\mathrm{f}_{\mathrm{X}} \mathrm{v}_{\mathrm{f}}=\frac{\left(\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}} \cdot \omega}\right)-\mathrm{v} \cdot \mathrm{r}_{\mathrm{O}}}{\mathrm{r}}$
$\mathrm{ex} 42.14615 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N} \cdot 13 \mathrm{rad} / \mathrm{s}}\right)-9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m}}{3 \mathrm{~m}}$
54) Velocity at Inlet when Work Done at Vane Angle is 90 and Velocity is Zero

ex $90.15257 \mathrm{~m} / \mathrm{s}=\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N} \cdot 35 \mathrm{~m} / \mathrm{s}}$

Velocity at Outlet

55) Velocity at Outlet given Power Delivered to Wheel
$f \mathbf{x} v=\frac{\left(\frac{\mathrm{P}_{\mathrm{dc}} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}}}\right)-\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}\right)}{\mathrm{v}_{\mathrm{f}}}$
$\mathrm{ex} 9.680421 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{2209 \mathrm{~W} \cdot 10}{12.36 \mathrm{~N}}\right)-(40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s})}{40 \mathrm{~m} / \mathrm{s}}$
56) Velocity at Outlet given Torque by Fluid
$f_{x} v=\frac{\left(\frac{\tau \cdot G}{w_{f}}\right)-\left(v_{f} \cdot r\right)}{r_{O}}$
$\operatorname{ex} 9.687163 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{292 \mathrm{~N}^{*} \mathrm{~m} \cdot 10}{12.36 \mathrm{~N}}\right)-(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m})}{12 \mathrm{~m}}$
57) Velocity at Outlet given Work Done if Jet leaves in Motion of Wheel
$f_{\mathbf{x}} \mathrm{v}=\frac{\left(\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}}}\right)-\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}\right)}{\mathrm{v}_{\mathrm{f}}}$
$\mathrm{ex} 43.8835 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N}}\right)-(40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s})}{40 \mathrm{~m} / \mathrm{s}}$
58) Velocity at Outlet given Work Done on Wheel
$f_{\mathbf{x}} \mathrm{v}=\frac{\left(\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{w}_{\mathrm{f}} \cdot \omega}\right)-\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{r}\right)}{\mathrm{r}_{\mathrm{O}}}$
ex $10.22654 \mathrm{~m} / \mathrm{s}=\frac{\left(\frac{3.9 \mathrm{KJ} \cdot 10}{12.36 \mathrm{~N} \cdot 13 \mathrm{rad} / \mathrm{s}}\right)-(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m})}{12 \mathrm{~m}}$

Weight of the Fluid

59) Weight of Fluid for Work Done if there is no loss of Energy
$f x w_{f}=\frac{w \cdot 2 \cdot G}{v_{f}^{2}-v^{2}}$
$\mathrm{ex}^{5} 51.78926 \mathrm{~N}=\frac{3.9 \mathrm{KJ} \cdot 2 \cdot 10}{(40 \mathrm{~m} / \mathrm{s})^{2}-(9.69 \mathrm{~m} / \mathrm{s})^{2}}$
60) Weight of Fluid for Work Done on Wheel per Second
$f_{x} w_{f}=\frac{w \cdot G}{\left(v_{f} \cdot r+v \cdot r_{O}\right) \cdot \omega}$
Open Calculator
ex $12.6968 \mathrm{~N}=\frac{3.9 \mathrm{KJ} \cdot 10}{(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m}+9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m}) \cdot 13 \mathrm{rad} / \mathrm{s}}$
61) Weight of Fluid given Angular Momentum at Inlet
$f_{\mathrm{x}} \mathrm{w}_{\mathrm{f}}=\frac{\mathrm{L} \cdot \mathrm{G}}{\mathrm{v}_{\mathrm{f}} \cdot r}$
Open Calculator
ex $20.83333 \mathrm{~N}=\frac{250 \mathrm{~kg}^{*} \mathrm{~m}^{2} / \mathrm{s} \cdot 10}{40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m}}$
62) Weight of Fluid given Angular Momentum at Outlet
$f_{\mathrm{x}} \mathrm{w}_{\mathrm{f}}=\frac{\mathrm{T}_{\mathrm{m}} \cdot \mathrm{G}}{\mathrm{v} \cdot \mathrm{r}_{\mathrm{O}}}$
Open Calculator
ex $91.97884 \mathrm{~N}=\frac{38.5 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s} \cdot 10}{9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m}}$
63) Weight of Fluid given Mass of Fluid Striking Vane per Second
$\mathrm{fx}_{\mathrm{x}} \mathrm{w}_{\mathrm{f}}=\mathrm{m}_{\mathrm{f}} \cdot \mathrm{G}$
ex $9 \mathrm{~N}=0.9 \mathrm{~kg} \cdot 10$
64) Weight of Fluid given Power Delivered to Wheel
$\mathrm{f}_{\mathrm{x}}^{\mathrm{w}} \mathrm{w}_{\mathrm{f}}=\frac{\mathrm{P}_{\mathrm{dc}} \cdot \mathrm{G}}{\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}+\mathrm{v} \cdot \mathrm{v}_{\mathrm{f}}}$
Open Calculator

$$
\operatorname{ex} 12.35735 \mathrm{~N}=\frac{2209 \mathrm{~W} \cdot 10}{40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s}+9.69 \mathrm{~m} / \mathrm{s} \cdot 40 \mathrm{~m} / \mathrm{s}}
$$

65) Weight of Fluid given Tangential Momentum of Fluid Striking Vanes at Inlet ©
$f \mathbf{f} \mathrm{w}_{\mathrm{f}}=\frac{\mathrm{T}_{\mathrm{m}} \cdot \mathrm{G}}{\mathrm{v}_{\mathrm{f}}}$
ex $9.625 \mathrm{~N}=\frac{38.5 \mathrm{~kg} * \mathrm{~m} / \mathrm{s} \cdot 10}{40 \mathrm{~m} / \mathrm{s}}$
66) Weight of Fluid given Work Done if Jet leaves in Motion of Wheel
$\mathrm{fx}_{\mathrm{X}} \mathrm{w}_{\mathrm{f}}=\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}-\mathrm{v} \cdot \mathrm{v}_{\mathrm{f}}}$
Open Calculator
ex $38.52232 \mathrm{~N}=\frac{3.9 \mathrm{KJ} \cdot 10}{40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s} \cdot 40 \mathrm{~m} / \mathrm{s}}$
67) Weight of Fluid when Work Done at Vane Angle is 90 and Velocity is Zero
$f \mathrm{x} \mathrm{w}_{\mathrm{f}}=\frac{\mathrm{w} \cdot \mathrm{G}}{\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}}$
ex $27.85714 \mathrm{~N}=\frac{3.9 \mathrm{KJ} \cdot 10}{40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s}}$

Work Done

68) Work Done for Radial Discharge at Vane Angle is 90 and Velocity is Zero
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{w}}=\left(\frac{\mathrm{w}_{\mathrm{f}}}{\mathrm{G}}\right) \cdot\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}\right)$
Open Calculator
ex $1.7304 \mathrm{KJ}=\left(\frac{12.36 \mathrm{~N}}{10}\right) \cdot(40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s})$
69) Work Done if Jet leaves in Direction as that of Motion of Wheel
$\mathrm{fx}_{\mathrm{x}} \mathrm{w}=\left(\frac{\mathrm{w}_{\mathrm{f}}}{\mathrm{G}}\right) \cdot\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{u}-\mathrm{v} \cdot \mathrm{v}_{\mathrm{f}}\right)$
ex $1.251326 K J=\left(\frac{12.36 \mathrm{~N}}{10}\right) \cdot(40 \mathrm{~m} / \mathrm{s} \cdot 35 \mathrm{~m} / \mathrm{s}-9.69 \mathrm{~m} / \mathrm{s} \cdot 40 \mathrm{~m} / \mathrm{s})$

70) Work Done if there is no Loss of Energy $\sqrt{ }$

$\mathrm{fx}_{\mathrm{x}} \mathrm{w}=\left(\frac{\mathrm{w}_{\mathrm{f}}}{2} \cdot \mathrm{G}\right) \cdot\left(\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}^{2}\right)$

Open Calculator

ex $0.093077 \mathrm{KJ}=\left(\frac{12.36 \mathrm{~N}}{2} \cdot 10\right) \cdot\left((40 \mathrm{~m} / \mathrm{s})^{2}-(9.69 \mathrm{~m} / \mathrm{s})^{2}\right)$

71) Work Done on Wheel per Second

$\mathrm{fx}_{\mathrm{x}} \mathrm{w}=\left(\frac{\mathrm{w}_{\mathrm{f}}}{\mathrm{G}}\right) \cdot\left(\mathrm{v}_{\mathrm{f}} \cdot \mathrm{r}+\mathrm{v} \cdot \mathrm{r}_{\mathrm{O}}\right) \cdot \omega$

$$
3.796547 \mathrm{KJ}=\left(\frac{12.36 \mathrm{~N}}{10}\right) \cdot(40 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~m}+9.69 \mathrm{~m} / \mathrm{s} \cdot 12 \mathrm{~m}) \cdot 13 \mathrm{rad} / \mathrm{s}
$$

Variables Used

- A Area (Square Meter)
- $\mathbf{A}_{\mathbf{c s}}$ Cross-Sectional Area (Square Meter)
- G Specific Gravity of Fluid
- L Angular Momentum (Kilogram Square Meter per Second)
- $\mathbf{m}_{\mathbf{f}}$ Fluid Mass (Kilogram)
- $\mathbf{P}_{\mathbf{d c}}$ Power Delivered (Watt)
- Q Discharge of Fluid (Cubic Meter per Second)
- r Radius of wheel (Meter)
- $\mathbf{r}_{\mathbf{O}}$ Radius of Outlet (Meter)
- $\mathbf{T}_{\mathbf{m}}$ Tangential Momentum (Kilogram Meter per Second)
- u Component of Velocity in X Direction (Meter per Second)
- u Initial Velocity (Meter per Second)
- \mathbf{u}_{01} Initial Velocity at Point 1 (Meter per Second)
- U02 Initial Velocity at Point 2 (Meter per Second)
- UFluid Fluid Velocity (Meter per Second)
- \mathbf{V} Component of Velocity in Y Direction (Meter per Second)
- V Velocity of Jet (Meter per Second)
- $\mathbf{V}_{\mathbf{2}}$ Velocity of Fluid at 2 (Meter per Second)
- $\mathbf{V}_{\mathbf{f}}$ Final Velocity (Meter per Second)
- VNegativesurges Velocity of Fluid at Negative Surges (Meter per Second)
- $\mathbf{V}_{\text {tangential }}$ Tangential Velocity (Meter per Second)
- w Work Done (Kilojoule)
- $\mathbf{W}_{\mathbf{f}}$ Weight of Fluid (Newton)
- 「 Circulation (Square Meter per Second)
- $\boldsymbol{\eta}$ Efficiency of Jet
- $\boldsymbol{\theta}$ Slope of Streamline
- $\boldsymbol{\rho}_{1}$ Density of Liquid 1 (Kilogram per Cubic Meter)
- $\boldsymbol{\rho}_{\mathbf{2}}$ Density of Liquid 2 (Kilogram per Cubic Meter)
- $\mathbf{~ T}$ Torque Exerted on Wheel (Newton Meter)
- Ф Slope of Equipotential Line
- $\boldsymbol{\omega}$ Angular Velocity (Radian per Second)
- $\boldsymbol{\Omega}$ Vorticity (1 per Second)
- $\mathbf{\Omega}$ Angular Speed (Revolution per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: arctan, arctan(Number)

Inverse trigonometric tangent function

- Function: ctan, ctan(Angle)

Trigonometric cotangent function

- Function: sqrt, sqrt(Number)

Square root function

- Function: tan, tan(Angle)

Trigonometric tangent function

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg)

Weight Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Energy in Kilojoule (KJ)

Energy Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s), Revolution per Second (rev/s)
Angular Velocity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

- Measurement: Torque in Newton Meter (N*m)

Torque Unit Conversion

- Measurement: Angular Momentum in Kilogram Square Meter per Second (kg*m²/s)
Angular Momentum Unit Conversion
- Measurement: Momentum in Kilogram Meter per Second (kg*m/s) Momentum Unit Conversion
- Measurement: Momentum Diffusivity in Square Meter per Second ($\mathrm{m}^{2} / \mathrm{s}$) Momentum Diffusivity Unit Conversion
- Measurement: Vorticity in 1 per Second (1/s)

Vorticity Unit Conversion

Check other formula lists

- Buoyancy And Floatation Formulas
- Culverts Formulas
- Equations of Motion and Energy Equation Formulas $\sqrt{ }$
- Flow of Compressible Fluids Formulas \mathcal{G}
- Flow Over Notches and Weirs Formulas
- Fluid Pressure and Its Measurement Formulas
- Fundamentals of Fluid Flow Formulas
- Hydroelectric Power Generation Formulas
- Hydrostatic Forces on Surfaces Formulas
- Impact of Free Jets Formulas
- Impulse Momentum Equation and its Applications Formulas
- Liquids in Relative Equilibrium Formulas
- Most Efficient Section of Channel Formulas
- Non-uniform Flow in Channels Formulas
- Properties of Fluid Formulas $\sqrt{\boxed{Z}}$
- Thermal Expansion of Pipe and Pipe Stresses Formulas
- Uniform Flow in Channels Formulas
- Water Power Engineering Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

