

Impulse Momentum Equation and its Applications Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 41 Impulse Momentum Equation and its Applications Formulas

Impulse Momentum Equation and its Applications 🕑

3) Radial Distance r2 given Torque Exerted on Fluid 🕑

4) Torque Exerted on Fluid

fx
$$au = \left(rac{{
m q}_{
m flow}}{\Delta}
ight) \cdot \left({
m r} 2 \cdot {
m V}_2 - {
m r} 1 \cdot {
m V}_1
ight)$$

ex
$$90.48245$$
N*m = $\left(\frac{24$ m³/s}{49m}\right) \cdot (6.3m \cdot 61.45m/s - 2m \cdot 101.2m/s)

5) Velocity at Radial Distance r1 given Torque Exerted on Fluid

fx
$$V_1 = rac{ ext{q}_{ ext{flow}} \cdot ext{r} 2 \cdot ext{V}_2 - (au \cdot \Delta)}{ ext{r} 1 \cdot ext{q}_{ ext{flow}}}$$

Open Calculator 🕑

Open Calculator

$$100.6717 \text{m/s} = \frac{24 \text{m}^3/\text{s} \cdot 6.3 \text{m} \cdot 61.45 \text{m/s} - (91 \text{N}^*\text{m} \cdot 49 \text{m})}{2 \text{m} \cdot 24 \text{m}^3/\text{s}}$$

6) Velocity at Radial Distance r2 given Torque Exerted on Fluid

fx
$$V_2 = rac{ ext{q}_{ ext{flow}} \cdot ext{r1} \cdot ext{V}_1 + (au \cdot \Delta)}{ ext{q}_{ ext{flow}} \cdot ext{r2}}$$

ex
$$61.61772 \text{m/s} = rac{24 \text{m}^3/\text{s} \cdot 2 \text{m} \cdot 101.2 \text{m/s} + (91 \text{N*m} \cdot 49 \text{m})}{24 \text{m}^3/\text{s} \cdot 6.3 \text{m}}$$

Jet Propulsion Reaction of Jet 🕑

7) Actual Velocity given Force exerted on Tank due to Jet 子

fx
$$\mathbf{v} = \sqrt{\frac{\mathbf{F} \cdot [\mathbf{g}]}{\gamma_{\mathbf{f}} \cdot \mathbf{A}_{Jet}}}$$

ex $14.13972 \text{m/s} = \sqrt{\frac{240 \text{N} \cdot [\mathbf{g}]}{9.81 \text{kN/m}^3 \cdot 1.2 \text{m}^2}}$
8) Area of Hole given Coefficient of Velocity for Jet \mathbf{C}

Open Calculator 🕑

9) Area of Jet given Force exerted on Tank due to Jet 🕑

12) Specific Weight of Liquid given Coefficient of Velocity for Jet 🕑

$$\begin{split} & \textbf{fx} \quad \gamma_{f} = \frac{0.5 \cdot F}{A_{Jet} \cdot h \cdot C_{v}^{2}} \\ & \textbf{ex} \quad 9.756189 \text{kN/m}^{3} = \frac{0.5 \cdot 240 \text{N}}{1.2 \text{m}^{2} \cdot 12.11 \text{m} \cdot (0.92)^{2}} \end{split}$$

13) Specific Weight of Liquid given Force exerted on Tank due to Jet

 $\begin{aligned} & \textbf{fx} \ \gamma_{\rm f} = \left(\frac{{\rm F} \cdot \left[{\rm g} \right]}{{\rm A}_{\rm Jet} \cdot \left({\rm v} \right)^2} \right) \end{aligned} \\ & \textbf{ex} \end{aligned} 9.865349 {\rm kN/m^3} = \left(\frac{240 {\rm N} \cdot \left[{\rm g} \right]}{1.2 {\rm m^2} \cdot \left({14.1 {\rm m/s}} \right)^2} \right) \end{aligned}$

Jet Propulsion of Ships 🕑

14) Absolute Velocity of Issuing jet given Propelling Force 🕑

fx
$$V = [g] \cdot \frac{F}{W_{Water}}$$
 Open Calculator
ex $2.353596 m/s = [g] \cdot \frac{240N}{1000 kg}$

Open Calculator

15) Absolute Velocity of Issuing Jet given Relative Velocity

19) Efficiency of Propulsion given Head Loss due to Friction

22) Velocity of Jet Relative to Motion of Ship given Kinetic Energy 🕑

$$\begin{array}{l} & \textbf{Open Calculator} \\ \hline \textbf{K} & V_r = \sqrt{KE \cdot 2 \cdot \frac{[g]}{W_{body}}} \\ \hline \textbf{ex} & 20.41237 \text{m/s} = \sqrt{1274.64 \text{J} \cdot 2 \cdot \frac{[g]}{60 \text{N}}} \\ \hline \textbf{cx} & 20.41237 \text{m/s} = \sqrt{1274.64 \text{J} \cdot 2 \cdot \frac{[g]}{60 \text{N}}} \\ \hline \textbf{cx} & 20.41237 \text{m/s} = \sqrt{1274.64 \text{J} \cdot 2 \cdot \frac{[g]}{60 \text{N}}} \\ \hline \textbf{cx} & 20.41237 \text{m/s} = \sqrt{1274.64 \text{J} \cdot 2 \cdot \frac{[g]}{60 \text{N}}} \\ \hline \textbf{cx} & \textbf{L} = V_r - V \\ \hline \textbf{cx} & \textbf{u} = V_r - V \\ \hline \textbf{cx} & \textbf{u} = V_r - V \\ \hline \textbf{cx} & 4.1 \text{m/s} = 10.1 \text{m/s} - 6 \text{m/s} \\ \hline \textbf{Momentum Theory of Propellers}} \\ \hline \textbf{Momentum Theory of Propellers}} \\ \hline \textbf{C} & \textbf{D} = \sqrt{\left(\frac{4}{\pi}\right) \cdot \frac{\text{Ft}}{\text{dP}}} \\ \hline \textbf{cx} & \textbf{D} = \sqrt{\left(\frac{4}{\pi}\right) \cdot \frac{\text{Ft}}{\text{dP}}} \\ \hline \end{array}$$

ex
$$14.56731 \mathrm{m} = \sqrt{\left(\frac{4}{\pi}\right) \cdot \frac{0.5 \mathrm{kN}}{3 \mathrm{Pa}}}$$

25) Flow Velocity given Power Lost 🖸

$$\label{eq:Vf} \begin{tabular}{|c|c|c|c|} \hline \mbox{Open Calculator Constraints} \\ \hline \mbox{V}_{f} = V - \sqrt{\left(\frac{P_{loss}}{\rho_{Fluid} \cdot q_{flow} \cdot 0.5}\right)} \\ \hline \mbox{ex} \\ 4.382389 m/s = 6m/s - \sqrt{\left(\frac{15.7W}{0.5 kg/m^{3} \cdot 24m^{3}/s \cdot 0.5}\right)} \\ \hline \end{tabular}$$

26) Flow Velocity given Rate of Flow through Propeller 🕑

fx
$$egin{aligned} V_{\mathrm{f}} = \left(8 \cdot rac{\mathrm{q}_{\mathrm{flow}}}{\pi \cdot \mathrm{D}^2}
ight) - \mathrm{V} \end{aligned}$$

Open Calculator 🕑

ex
$$-5.711711 \mathrm{m/s} = \left(8 \cdot rac{24 \mathrm{m^3/s}}{\pi \cdot (14.56 \mathrm{m})^2}
ight) - 6 \mathrm{m/s}$$

27) Flow Velocity given Theoretical Propulsive efficiency 🕑

fx
$$V_{f} = rac{V}{rac{2}{\eta} - 1}$$
 Open Calculator (

37) Thrust on Propeller 💪 Open Calculator $\mathbf{fx} Ft = \left(\frac{\pi}{4}\right) \cdot \left(D^2\right) \cdot dP$ ex 0.499498kN = $\left(\frac{\pi}{4}\right) \cdot \left((14.56\text{m})^2\right) \cdot 3$ Pa Jet Velocity 38) Jet Velocity given Output Power 💪 Open Calculator $\mathbf{fx} \mathbf{V} = \left(\frac{\mathbf{P}_{\text{out}}}{\mathbf{\rho}_{\text{Watar}} \cdot \mathbf{Q}_{\text{flow}} \cdot \mathbf{V}_{\text{f}}}\right) + \mathbf{V}_{\text{f}}$ ex $5.000302 \text{m/s} = \left(\frac{36.3 \text{W}}{1000 \text{kg/m}^3 \cdot 24 \text{m}^3/\text{s} \cdot 5 \text{m/s}}\right) + 5 \text{m/s}$ 39) Jet Velocity given Power Lost 💪 Open Calculator fx $V = \sqrt{\left(rac{P_{loss}}{
ho_{Fluid} \cdot q_{flow} \cdot 0.5}
ight)} + V_{f}$ ex $6.617611 \text{m/s} = \sqrt{\left(\frac{15.7 \text{W}}{0.5 \text{kg/m}^3 \cdot 24 \text{m}^3/\text{s} \cdot 0.5}\right)} + 5 \text{m/s}$

40) Jet Velocity given Theoretical Propulsive Efficiency

$$fx V = \left(\frac{2}{\eta} - 1\right) \cdot V_{f}$$

$$ex 7.5m/s = \left(\frac{2}{0.80} - 1\right) \cdot 5m/s$$

$$fx V = \left(\frac{Ft}{\rho_{Water} \cdot q_{flow}}\right) + V_{f}$$

$$fx V = \left(\frac{Ft}{\rho_{Water} \cdot q_{flow}}\right) + V_{f}$$

$$fx 5.020833m/s = \left(\frac{0.5kN}{1000kg/m^{3} \cdot 24m^{3}/s}\right) + 5m/s$$

Variables Used

- A_{Jet} Cross Sectional Area of Jet (Square Meter)
- C_v Coefficient of Velocity
- D Diameter of Turbine (Meter)
- **dP** Change in Pressure (Pascal)
- **F** Force of Fluid (Newton)
- Ft Thrust Force (Kilonewton)
- h Impulse Height (Meter)
- KE Kinetic Energy (Joule)
- Pi Total Input Power (Joule per Second)
- Ploss Power Loss (Watt)
- Pout Output Power (Watt)
- **Q** Rate of Flow through Propeller (Cubic Meter per Second)
- **Q**flow Rate of Flow (Cubic Meter per Second)
- r1 Radial Distance 1 (Meter)
- r2 Radial Distance 2 (Meter)
- U Velocity of Ship (Meter per Second)
- V Actual Velocity (Meter per Second)
- V Absolute Velocity of Issuing Jet (Meter per Second)
- V₁ Velocity at Point 1 (Meter per Second)
- V₂ Velocity at Point 2 (Meter per Second)
- V_f Flow Velocity (Meter per Second)
- V_r Relative Velocity (Meter per Second)

- W Work done (Joule)
- Wbody Weight of Body (Newton)
- Wwater Weight of Water (Kilogram)
- γ_f Specific Weight of Liquid (Kilonewton per Cubic Meter)
- **Δ** Delta Length (Meter)
- η Efficiency of Jet
- **PFluid** Density of Fluid (Kilogram per Cubic Meter)
- **PWater** Water Density (Kilogram per Cubic Meter)
- **T** Torque Exerted on Fluid (Newton Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Pressure in Pascal (Pa) Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Power in Watt (W), Joule per Second (J/s)
 Power Unit Conversion
- Measurement: Force in Newton (N), Kilonewton (kN) Force Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s) Volumetric Flow Rate Unit Conversion

- Measurement: **Density** in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion
- Measurement: **Torque** in Newton Meter (N*m) *Torque Unit Conversion*
- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion

Check other formula lists

- Buoyancy And Floatation
 Formulas
- Culverts Formulas
- Equations of Motion and Energy Equation Formulas
- Flow of Compressible Fluids
 Formulas
- Flow Over Notches and Weirs Formulas
- Fluid Pressure and Its Measurement Formulas
- Fundamentals of Fluid Flow Formulas
- Hydroelectric Power Generation
 Formulas
- Hydrostatic Forces on Surfaces
 Formulas

- Impact of Free Jets Formulas
- Impulse Momentum Equation and its Applications Formulas
- Liquids in Relative Equilibrium Formulas
- Most Efficient Section of Channel Formulas
- Non uniform Flow in Channels Formulas
- Properties of Fluid Formulas G
- Thermal Expansion of Pipe and Pipe Stresses Formulas
- Uniform Flow in Channels
 Formulas
- Water Power Engineering
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/9/2024 | 7:18:50 AM UTC

Please leave your feedback here...

