

AC Bridge Circuits Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator

Open Calculator

Open Calculator

List of 18 AC Bridge Circuits Formulas

AC Bridge Circuits

Anderson Bridge 🗗

1) Capacitor Current in Anderson Bridge

fx
$$I_{c(ab)} = I_{1(ab)} \cdot \omega \cdot C_{(ab)} \cdot R_{3(ab)}$$

$$\textbf{ex} \ 2.436 \text{A} = 0.58 \text{A} \cdot 200 \text{rad/s} \cdot 420 \mu \text{F} \cdot 50 \Omega$$

2) Unknown Inductance in Anderson Bridge

$$\begin{split} L_{1(ab)} &= C_{(ab)} \cdot \left(\frac{R_{3(ab)}}{R_{4(ab)}}\right) \cdot \left(\left(r_{1(ab)} \cdot \left(R_{4(ab)} + R_{3(ab)}\right)\right) + \left(R_{2(ab)} \cdot R_{4(ab)}\right)\right) \\ \\ &= \underbrace{\left(\frac{50\Omega}{150\Omega}\right) \cdot \left(\left(4.5\Omega \cdot \left(150\Omega + 50\Omega\right)\right) + \left(20\Omega \cdot 150\Omega\right)\right)}_{\text{EX}} \end{split}$$

$$R_{1(ab)} = \left(rac{R_{2(ab)} \cdot R_{3(ab)}}{R_{4(ab)}}
ight) - r_{1(ab)}$$

$$oxed{ex} 2.166667\Omega = \left(rac{20\Omega \cdot 50\Omega}{150\Omega}
ight) - 4.5\Omega$$

De Sauty Bridge G

4) Dissipation Factor of Known Capacitor in De Sauty Bridge 🖸

$$D_{2(dsb)} = \omega \cdot C_{2(dsb)} \cdot r_{2(dsb)}$$

$$\textbf{ex} \ 0.5344 = 200 \text{rad/s} \cdot 167 \mu \text{F} \cdot 16\Omega$$

5) Dissipation Factor of Unknown Capacitor in De Sauty Bridge

fx $D_{1(dsb)} = \omega \cdot C_{1(dsb)} \cdot r_{1(dsb)}$

Open Calculator 🗗

 $0.729106 = 200 \text{rad/s} \cdot 191.87 \mu \text{F} \cdot 19\Omega$

6) Unknown Capacitance in De Sauty Bridge

 $\mathbf{C}_{1(\mathrm{dsb})} = \mathrm{C}_{2(\mathrm{dsb})} \cdot \left(rac{\mathrm{R}_{4(\mathrm{dsb})}}{\mathrm{R}_{3(\mathrm{dsb})}}
ight)$

Open Calculator

 $oxed{ex} 191.8723 \mu F = 167 \mu F \cdot \left(rac{54\Omega}{47\Omega}
ight)$

Hay Bridge 🗗

7) Quality Factor of Hay Bridge using Capacitance

 $\mathbf{R} \mathbf{Q}_{(\mathrm{hay})} = rac{1}{\mathrm{C}_{4(\mathrm{hay})} \cdot \mathrm{R}_{4(\mathrm{hay})} \cdot \omega}$

Open Calculator

 $oxed{ex} \left[0.784929 = rac{1}{260 \mu \mathrm{F} \cdot 24.5 \Omega \cdot 200 \mathrm{rad/s}}
ight]$

8) Unknown Inductance in Hay Bridge

 $\mathbf{E} \mathbf{L}_{1(\mathrm{hay})} = rac{\mathrm{R}_{2(\mathrm{hay})} \cdot \mathrm{R}_{3(\mathrm{hay})} \cdot \mathrm{C}_{4(\mathrm{hay})}}{1 + \omega^2 \cdot \mathrm{C}_{4(\mathrm{hay})}^2 \cdot \mathrm{R}_{4(\mathrm{hay})}^2}$

Open Calculator

 $\boxed{ 109.4288 \mathrm{mH} = \frac{32\Omega \cdot 34.5\Omega \cdot 260 \mu F}{1 + \left(200 \mathrm{rad/s}\right)^2 \cdot \left(260 \mu F\right)^2 \cdot \left(24.5\Omega\right)^2 } }$

9) Unknown Resistance of Hay Bridge

 $\mathbf{R}_{1(\mathrm{hay})} = rac{\omega^2 \cdot \mathrm{R}_{2(\mathrm{hay})} \cdot \mathrm{R}_{3(\mathrm{hay})} \cdot \mathrm{R}_{4(\mathrm{hay})} \cdot \mathrm{C}_{4(\mathrm{hay})}^2}{1 + \left(\omega^2 \cdot \mathrm{R}_{4(\mathrm{hay})}^2 \cdot \mathrm{C}_{4(\mathrm{hay})}^2
ight)}$

Open Calculator 🗗

Open Calculator

Open Calculator

Open Calculator

Maxwell Bridge 2

10) Quality Factor of Maxwell Inductance-Capacitance Bridge

 $\mathbf{R} \mathbf{Q}_{(\mathrm{max})} = rac{\omega \cdot L_{1(\mathrm{max})}}{R_{\mathrm{eff}(\mathrm{max})}}$

 $oxed{ex} 0.501092 = rac{200 \mathrm{rad/s} \cdot 32.571 \mathrm{mH}}{13\Omega}$

11) Unknown Inductance in Maxwell Inductance Bridge 💪

 $egin{aligned} \mathbf{K} egin{aligned} \mathbf{L}_{1(ext{max})} &= \left(rac{\mathbf{R}_{3(ext{max})}}{\mathbf{R}_{4(ext{max})}}
ight) \cdot \mathbf{L}_{2(ext{max})} \end{aligned}$

ex $32.57143 \mathrm{mH} = \left(\frac{12\Omega}{14\Omega}\right) \cdot 38 \mathrm{mH}$

12) Unknown Resistance in Maxwell Inductance Bridge 🗹

 $m R_{1(max)} = \left(rac{R_{3(max)}}{R_{4(max)}}
ight) \cdot \left(R_{2(max)} + r_{2(max)}
ight)$

 $oxed{ex} 110.5714\Omega = \left(rac{12\Omega}{14\Omega}
ight) \cdot \left(29\Omega + 100\Omega
ight)$

Schering Bridge 🗗

13) Dissipation Factor in Schering Bridge

$$\mathbf{E} D_{1(\mathrm{sb})} = \omega \cdot C_{4(\mathrm{sb})} \cdot R_{4(\mathrm{sb})}$$

Open Calculator 🗗

$$extstyle{0.6104} = 200 ext{rad/s} \cdot 109 \mu ext{F} \cdot 28 \Omega$$

14) Unknown Capacitance in Schering Bridge

$$\left[\mathbf{R}
ight] \mathrm{C}_{1(\mathrm{sb})} = \left(rac{\mathrm{R}_{4(\mathrm{sb})}}{\mathrm{R}_{3(\mathrm{sb})}}
ight) \cdot \mathrm{C}_{2(\mathrm{sb})}$$

Open Calculator

$$oxed{ex} 183.3548 \mu ext{F} = \left(rac{28\Omega}{31\Omega}
ight) \cdot 203 \mu ext{F}$$

15) Unknown Resistance in Schering Bridge

$$\boxed{\mathbf{r}_{1(sb)} = \left(\frac{C_{4(sb)}}{C_{2(sb)}}\right) \cdot R_{3(sb)}}$$

Open Calculator

$$\boxed{16.64532\Omega = \left(\frac{109\mu F}{203\mu F}\right)\cdot 31\Omega}$$

Wien Bridge 🚰

16) Angular Frequency in Wien's Bridge 🗹

$$\omega_{(\mathrm{wein})} = rac{1}{\sqrt{\mathrm{R}_{1(\mathrm{wein})} \cdot \mathrm{R}_{2(\mathrm{wein})} \cdot \mathrm{C}_{1(\mathrm{wein})} \cdot \mathrm{C}_{2(\mathrm{wein})}}}$$

Open Calculator

ex
$$138.5107 \mathrm{rad/s} = \frac{1}{\sqrt{27\Omega \cdot 26\Omega \cdot 270\mu\mathrm{F} \cdot 275\mu\mathrm{F}}}$$

17) Resistance Ratio in Wien Bridge

$$ext{RR}_{(wein)} = \left(rac{R_{2(wein)}}{R_{1(wein)}}
ight) + \left(rac{C_{1(wein)}}{C_{2(wein)}}
ight)$$

Open Calculator

ex
$$1.944781=\left(rac{26\Omega}{27\Omega}
ight)+\left(rac{270\mu F}{275\mu F}
ight)$$

18) Unknown Frequency in Wien Bridge

$$\mathbf{f}_{(\mathrm{wein})} = rac{1}{2 \cdot \pi \cdot \left(\sqrt{\mathrm{R}_{1(\mathrm{wein})} \cdot \mathrm{R}_{2(\mathrm{wein})} \cdot \mathrm{C}_{1(\mathrm{wein})} \cdot \mathrm{C}_{2(\mathrm{wein})}
ight)}$$

Open Calculator 🗗

Variables Used

- C_(ab) Capacitance in Anderson Bridge (Microfarad)
- C_{1(dsb)} Unknown Capacitance in De Sauty Bridge (Microfarad)
- C_{1(sb)} Unknown Capacitance in Schering Bridge (Microfarad)
- C_{1(wein)} Known Capacitance 1 in Wein Bridge (*Microfarad*)
- C_{2(dsb)} Known Capacitance in De Sauty Bridge (Microfarad)
- C_{2(sb)} Known Capacitance 2 in Schering Bridge (Microfarad)
- C_{2(wein)} Known Capacitance 2 in Wein Bridge (*Microfarad*)
- C_{4(hav)} Capacitance in Hay Bridge (Microfarad)
- C_{4(sh)} Known Capacitance 4 in Schering Bridge (Microfarad)
- D_{1(dsb)} Dissipation Factor 1 in De Sauty Bridge
- D_{1(sb)} Dissipation Factor in Schering Bridge
- D_{2(dsb)} Dissipation Factor 2 in De Sauty Bridge
- f(wein) Unknown Frequency in Wein Bridge (Hertz)
- I_{1(ab)} Inductor Current in Anderson Bridge (Ampere)
- Ic(ab) Capacitor Current in Anderson Bridge (Ampere)
- L_{1(ab)} Unknown Inductance in Anderson Bridge (Millihenry)
- L_{1(hav)} Unknown Inductance in Hay Bridge (Millihenry)
- L_{1(max)} Unknown Inductance in Maxwell Bridge (Millihenry)
- L_{2(max)} Variable Inductance in Maxwell Bridge (Millihenry)
- Q_(hay) Quality Factor in Hay Bridge
- Q_(max) Quality Factor in Maxwell Bridge
- r_{1(ab)} Series Resistance in Anderson Bridge (Ohm)
- R_{1(ab)} Inductor Resistance in Anderson Bridge (Ohm)
- r_{1(dsb)} Capacitor 1 Resistance in De Sauty Bridge (Ohm)
- R_{1(hay)} Unknown Resistance in Hay Bridge (Ohm)
- R_{1(max)} Unknown Resistance in Maxwell Bridge (Ohm)

- r_{1(sb)} Series Resistance 1 in Schering Bridge (Ohm)
- R_{1(wein)} Known Resistance 1 in Wein Bridge (Ohm)
- R_{2(ab)} Known Resistance 2 in Anderson Bridge (Ohm)
- r_{2(dsb)} Capacitor 2 Resistance in De Sauty Bridge (Ohm)
- R_{2(hav)} Known Resistance 2 in Hay Bridge (Ohm)
- r_{2(max)} Decade Resistance in Maxwell Bridge (Ohm)
- R_{2(max)} Variable Resistance in Maxwell Bridge (Ohm)
- R_{2(wein)} Known Resistance 2 in Wein Bridge (Ohm)
- R_{3(ab)} Known Resistance 3 in Anderson Bridge (Ohm)
- R_{3(dsb)} Known Resistance 3 in De Sauty Bridge (Ohm)
- R_{3(hav)} Known Resistance 3 in Hay Bridge (Ohm)
- R_{3(max)} Known Resistance 3 in Maxwell Bridge (Ohm)
- R_{3(sb)} Known Resistance 3 in Schering Bridge (Ohm)
- R_{4(ab)} Known Resistance 4 in Anderson Bridge (Ohm)
- R4(dsb) Known Resistance 4 in De Sauty Bridge (Ohm)
- R_{4(hav)} Known Resistance 4 in Hay Bridge (Ohm)
- R_{4(max)} Known Resistance 4 in Maxwell Bridge (Ohm)
- R_{4(sb)} Known Resistance 4 in Schering Bridge (Ohm)
- Reff(max) Effective Resistance in Maxwell Bridge (Ohm)
- RR_(wein) Resistance Ratio in Wein Bridge
- ω Angular Frequency (Radian per Second)
- ω_(wein) Angular Frequency in Wein Bridge (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Electric Current in Ampere (A)

 Electric Current Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Capacitance in Microfarad (μF)
 Capacitance Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Inductance in Millihenry (mH)
 Inductance Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s)
 Angular Frequency Unit Conversion

Check other formula lists

- AC Bridge Circuits Formulas
- DC Bridges Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/27/2023 | 9:21:07 PM UTC

Please leave your feedback here...

