
calculatoratoz.com

unitsconverters.com

Nominal Pi-Method in Medium Line Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Nominal Pi-Method in Medium Line Formulas

\section*{Nominal Pi-Method in Medium Line | |
| :---: |
| |}

1) A-Parameter in Nominal Pi Method
$f \mathrm{fx} \mathrm{A}_{\mathrm{pi}}=1+\left(\mathrm{Y}_{\mathrm{pi}} \cdot \frac{\mathrm{Z}_{\mathrm{pi}}}{2}\right)$
Open Calculator
ex $1.09555=1+\left(0.021 \mathrm{~S} \cdot \frac{9.1 \Omega}{2}\right)$
2) B Parameter for Reciprocal Network in Nominal Pi Method \preceq
$f \times \mathrm{B}_{\mathrm{pi}}=\frac{\left(\mathrm{A}_{\mathrm{pi}} \cdot \mathrm{D}_{\mathrm{pi}}\right)-1}{\mathrm{C}_{\mathrm{pi}}}$
Open Calculator
ex $8.797727 \Omega=\frac{(1.095 \cdot 1.09)-1}{0.022 \mathrm{~S}}$
3) C Parameter in Nominal Pi Method
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{pi}}=\mathrm{Y}_{\mathrm{pi}} \cdot\left(1+\left(\mathrm{Y}_{\mathrm{pi}} \cdot \frac{\mathrm{Z}_{\mathrm{pi}}}{4}\right)\right)$
Open Calculator 〔
ex $0.022003 \mathrm{~S}=0.021 \mathrm{~S} \cdot\left(1+\left(0.021 \mathrm{~S} \cdot \frac{9.1 \Omega}{4}\right)\right)$
4) D Parameter in Nominal Pi Method
$f \mathrm{x} \mathrm{D}_{\mathrm{pi}}=1+\left(Z_{\mathrm{pi}} \cdot \frac{Y_{\mathrm{pi}}}{2}\right)$
ex $1.09555=1+\left(9.1 \Omega \cdot \frac{0.021 \mathrm{~S}}{2}\right)$
5) Impedance using A Parameter in Nominal Pi Method
$f \mathrm{fx} \mathrm{Z}_{\mathrm{pi}}=2 \cdot \frac{\mathrm{~A}_{\mathrm{pi}}-1}{Y_{\mathrm{pi}}}$
Open Calculator
ex $9.047619 \Omega=2 \cdot \frac{1.095-1}{0.021 S}$
6) Load Current using Losses in Nominal Pi Method
$f \times \mathrm{I}_{\mathrm{L}(\mathrm{pi})}=\sqrt{\frac{\mathrm{P}_{\mathrm{loss}(\mathrm{pi})}}{\mathrm{R}_{\mathrm{pi}}}}$
ex $3.361508 \mathrm{~A}=\sqrt{\frac{85.2 \mathrm{~W}}{7.54 \Omega}}$
7) Load Current using Transmission Efficiency in Nominal Pi Method
$\mathbf{f x}_{\mathrm{x}} \mathrm{I}_{\mathrm{L}(\mathrm{pi})}=\sqrt{\frac{\left(\frac{\mathrm{P}_{\mathrm{r}(\mathrm{pi})}}{\eta_{\mathrm{pi}}}\right)-\mathrm{P}_{\mathrm{r}(\mathrm{pi})}}{\mathrm{R}_{\mathrm{pi}}} \cdot 3}$
$\operatorname{ex} 5.836114 \mathrm{~A}=\sqrt{\frac{\left(\frac{250.1 \mathrm{~W}}{0.745}\right)-250.1 \mathrm{~W}}{7.54 \Omega} \cdot 3}$
8) Losses in Nominal Pi Method
$\mathbf{f x} \mathrm{P}_{\operatorname{loss}(\mathrm{pi})}=\left(\mathrm{I}_{\mathrm{L}(\mathrm{pi})}^{2}\right) \cdot \mathrm{R}_{\mathrm{pi}}$
Open Calculator
ex $85.12358 \mathrm{~W}=\left((3.36 \mathrm{~A})^{2}\right) \cdot 7.54 \Omega$
9) Losses using Transmission Efficiency in Nominal Pi Method
$f \mathbf{x} \mathrm{P}_{\operatorname{loss}(\mathrm{pi})}=\left(\frac{\mathrm{P}_{\mathrm{r}(\mathrm{pi})}}{\eta_{\mathrm{pi}}}\right)-\mathrm{P}_{\mathrm{r}(\mathrm{pi})}$
ex $85.6047 \mathrm{~W}=\left(\frac{250.1 \mathrm{~W}}{0.745}\right)-250.1 \mathrm{~W}$
10) Receiving End Angle using Transmission Efficiency in Nominal Pi Method
$f \mathrm{x} \Phi_{\mathrm{r}(\mathrm{pi})}=a \cos \left(\frac{\eta_{\mathrm{pi}} \cdot \mathrm{P}_{\mathrm{s}(\mathrm{pi})}}{3 \cdot \mathrm{I}_{\mathrm{r}(\mathrm{pi})} \cdot \mathrm{V}_{\mathrm{r}(\mathrm{pi})}}\right)$
Open Calculator
ex $87.99815^{\circ}=a \cos \left(\frac{0.745 \cdot 335 \mathrm{~W}}{3 \cdot 7.44 \mathrm{~A} \cdot 320.1 \mathrm{~V}}\right)$
11) Receiving End Current using Transmission Efficiency in Nominal Pi Method
$\mathbf{f x} \mathrm{I}_{\mathrm{r}(\mathrm{pi})}=\frac{\eta_{\mathrm{pi}} \cdot \mathrm{P}_{\mathrm{s}(\mathrm{pi})}}{3 \cdot \mathrm{~V}_{\mathrm{r}(\mathrm{pi})} \cdot\left(\cos \left(\Phi_{\mathrm{r}(\mathrm{pi})}\right)\right)}$
Open Calculator
ex $7.409857 \mathrm{~A}=\frac{0.745 \cdot 335 \mathrm{~W}}{3 \cdot 320.1 \mathrm{~V} \cdot\left(\cos \left(87.99^{\circ}\right)\right)}$
12) Receiving End Voltage using Sending End Power in Nominal Pi Method
$\mathbf{f x} \mathrm{V}_{\mathrm{r}(\mathrm{pi})}=\frac{\mathrm{P}_{\mathrm{s}(\mathrm{pi})}-\mathrm{P}_{\operatorname{loss}(\mathrm{pi})}}{\mathrm{I}_{\mathrm{r}(\mathrm{pi})} \cdot \cos \left(\Phi_{\mathrm{r}(\mathrm{pi})}\right)}$
Open Calculator
ex $957.2716 \mathrm{~V}=\frac{335 \mathrm{~W}-85.2 \mathrm{~W}}{7.44 \mathrm{~A} \cdot \cos \left(87.99^{\circ}\right)}$
13) Receiving End Voltage using Voltage Regulation in Nominal Pi Method凹
$f \mathrm{f} \mathrm{V}_{\mathrm{r}(\mathrm{pi})}=\frac{\mathrm{V}_{\mathrm{s}(\mathrm{pi})}}{\% \mathrm{~V}_{\mathrm{pi}}+1}$
ex $321.9512 \mathrm{~V}=\frac{396 \mathrm{~V}}{0.23+1}$
14) Resistance using Losses in Nominal Pi Method
$f \mathbf{x} \mathrm{R}_{\mathrm{pi}}=\frac{\mathrm{P}_{\operatorname{loss}(\mathrm{pi})}}{\mathrm{I}_{\mathrm{L}(\mathrm{pi})}^{2}}$
Open Calculator

$$
\text { ex } 7.546769 \Omega=\frac{85.2 \mathrm{~W}}{(3.36 \mathrm{~A})^{2}}
$$

15) Sending End Current using Transmission Efficiency in Nominal Pi Method

Open Calculator ©
ex $0.304772 \mathrm{~A}=\frac{250.1 \mathrm{~W}}{3 \cdot \cos \left(22^{\circ}\right) \cdot 0.745 \cdot 396 \mathrm{~V}}$
16) Sending End Power using Transmission Efficiency in Nominal Pi Method
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{s}(\mathrm{pi})}=\frac{\mathrm{P}_{\mathrm{r}(\mathrm{pi})}}{\eta_{\mathrm{pi}}}$
ex $335.7047 \mathrm{~W}=\frac{250.1 \mathrm{~W}}{0.745}$
17) Sending End Voltage using Transmission Efficiency in Nominal Pi Method
$f \mathbf{f x} \mathrm{~V}_{\mathrm{s}(\mathrm{pi})}=\frac{\mathrm{P}_{\mathrm{r}(\mathrm{pi})}}{3 \cdot \cos \left(\Phi_{\mathrm{s}(\mathrm{pi})}\right) \cdot \mathrm{I}_{\mathrm{s}(\mathrm{pi})}} / \eta_{\mathrm{pi}}$
Open Calculator
ex $402.2991 \mathrm{~V}=\frac{250.1 \mathrm{~W}}{3 \cdot \cos \left(22^{\circ}\right) \cdot 0.3 \mathrm{~A}} / 0.745$
18) Sending End Voltage using Voltage Regulation in Nominal Pi Method $\boxed{\square}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}_{\mathrm{s}(\mathrm{pi})}=\mathrm{V}_{\mathrm{r}(\mathrm{pi})} \cdot\left(\% \mathrm{~V}_{\mathrm{pi}}+1\right)$
Open Calculator
ex $393.723 \mathrm{~V}=320.1 \mathrm{~V} \cdot(0.23+1)$
19) Transmission Efficiency (Nominal Pi Method)
$f x \eta_{\mathrm{pi}}=\frac{\mathrm{P}_{\mathrm{r}(\mathrm{pi})}}{\mathrm{P}_{\mathrm{s}(\mathrm{pi})}}$
ex $0.746567=\frac{250.1 \mathrm{~W}}{335 \mathrm{~W}}$
20) Voltage Regulation (Nominal Pi Method)
$f \mathbf{f} \% \mathrm{~V}_{\mathrm{pi}}=\frac{\mathrm{V}_{\mathrm{s}(\mathrm{pi})}-\mathrm{V}_{\mathrm{r}(\mathrm{pi})}}{\mathrm{V}_{\mathrm{r}(\mathrm{pi})}}$
ex $0.237113=\frac{396 \mathrm{~V}-320.1 \mathrm{~V}}{320.1 \mathrm{~V}}$

Variables Used

- $\% \mathbf{V}_{\mathbf{p i}}$ Voltage Regulation in PI
- $\mathbf{A}_{\mathbf{p i}}$ A Parameter in Pl
- $\mathbf{B}_{\mathbf{p i}}$ B Parameter in Pl (Ohm)
- $\mathbf{C}_{\text {pi }}$ C Parameter in PI (Siemens)
- $\mathbf{D}_{\mathbf{p i}}$ D Parameter in PI
- $\mathbf{I}_{\mathrm{L}(\mathrm{pi})}$ Load Current in PI (Ampere)
- $I_{r(p i)}$ Receiving End Current in PI (Ampere)
- $\mathbf{I}_{\mathbf{s}(\mathrm{pi})}$ Sending End Current in PI (Ampere)
- Ploss(pi) $^{\text {Power Loss in PI (Watt) }}$
- $\mathbf{P r}_{\mathbf{r}(\mathrm{pi})}$ Receiving End Power in PI (Watt)
- $\mathbf{P}_{\mathbf{s}(\mathrm{pi})}$ Sending End Power in Pl (Watt)
- $\mathbf{R}_{\mathbf{p i}}$ Resistance in PI (Ohm)
- $\mathbf{V}_{\mathbf{r}(\mathrm{pi})}$ Receiving End Voltage in PI (Volt)
- $\mathbf{V}_{\mathbf{s}(\mathbf{p i})}$ Sending End Voltage in PI (Volt)
- $\mathbf{Y}_{\mathbf{p i}}$ Admittance in PI (Siemens)
- $\mathbf{Z}_{\mathbf{p i}}$ Impedance in PI (Ohm)
- $\eta_{\mathbf{p i}}$ Transmission Efficiency in PI
- $\Phi_{r(p i)}$ Receiving End Phase Angle in PI (Degree)
- $\boldsymbol{\Phi}_{\mathbf{s}(\mathbf{p i})}$ Sending End Phase Angle in PI (Degree)

Constants, Functions, Measurements used

- Function: acos, acos(Number)

Inverse trigonometric cosine function

- Function: cos, cos(Angle)

Trigonometric cosine function

- Function: sqrt, sqrt(Number)

Square root function

- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Electric Conductance in Siemens (S)

Electric Conductance Unit Conversion

- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

Check other formula lists

- End Condenser Method in Medium Line Formulas
- Nominal Pi-Method in Medium Line Formulas
- Nominal T-Method in Medium Line Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

