

Design of Friction Clutches Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 48 Design of Friction Clutches Formulas

Design of Friction Clutches

1) Friction Radius of Clutch given Friction Torque

$$\left| \mathbf{K} \right| \mathbf{R}_{\mathrm{f}} = rac{\mathbf{M}_{\mathrm{T}}}{\mathbf{\mu} \cdot \mathbf{P}_{\mathrm{a}}}$$

Open Calculator

2) Friction Radius of Clutch given Outer and Inner Diameter

 $R_{
m f} = rac{{
m d}_{
m o} + {
m d}_{
m i}}{4}$

Open Calculator

3) Inner Diameter of Clutch given Friction Radius

 $\mathbf{K} \left[\mathbf{d_i} = (4 \cdot \mathbf{R_f}) - \mathbf{d_o}
ight]$

Open Calculator 🗗

 $= 100 \text{mm} = (4 \cdot 75 \text{mm}) - 200 \text{mm}$

4) Outer Diameter of Clutch given Friction Radius 🗗

 $\mathbf{f}\mathbf{x} \left[\mathrm{d_o} = \left(4 \cdot \mathrm{R_f} \right) - \mathrm{d_i}
ight]$

Open Calculator

 $200 \text{mm} = (4 \cdot 75 \text{mm}) - 100 \text{mm}$

5) Permissible Pressure Intensity on Clutch from Constant Wear Theory given Axial Force

 $\mathbf{f}_{\mathbf{a}} = 2 \cdot rac{P_{\mathbf{a}}}{\pi \cdot d_{\mathbf{i}} \cdot (d_{\mathbf{o}} - d_{\mathbf{i}})}$

Open Calculator

ex $1.012225 \mathrm{N/mm^2} = 2 \cdot rac{15900 \mathrm{N}}{\pi \cdot 100 \mathrm{mm} \cdot (200 \mathrm{mm} - 100 \mathrm{mm})}$

© calculatoratoz.com. A softusvista inc. venture!

6) Permissible Pressure Intensity on Clutch from Constant Wear Theory given Friction Torque

 $\mathbf{p}_{\mathrm{a}} = 8 \cdot rac{\mathrm{M_{T}}}{\pi \cdot \mu \cdot \mathrm{d_{i}} \cdot \left(\left(\mathrm{d_{o}^{2}}
ight) - \left(\mathrm{d_{i}^{2}}
ight)
ight)}$

Open Calculator 🗗

7) Pressure on Clutch Plate from Constant Pressure Theory given Axial Force

 $ext{P}_{ ext{p}} = 4 \cdot rac{ ext{P}_{ ext{a}}}{\pi \cdot \left(\left(ext{d}_{ ext{o}}^2
ight) - \left(ext{d}_{ ext{i}}^2
ight)
ight)}$

Open Calculator

 $\boxed{0.674817 \mathrm{N/mm^2} = 4 \cdot \frac{15900 \mathrm{N}}{\pi \cdot \left(\left(\left(200 \mathrm{mm} \right)^2 \right) - \left(\left(100 \mathrm{mm} \right)^2 \right) \right)}}$

8) Pressure on Clutch Plate from Constant Pressure Theory given Friction Torque

 $ext{P}_{ ext{p}} = 12 \cdot rac{ ext{M}_{ ext{T}}}{\pi \cdot \mu \cdot \left(\left(ext{d}_{ ext{o}}^3
ight) - \left(ext{d}_{ ext{i}}^3
ight)
ight)}$

Open Calculator

 $= 12 \cdot \frac{238500 \text{N*mm}}{\pi \cdot 0.2 \cdot \left(\left(\left(200 \text{mm} \right)^3 \right) - \left((100 \text{mm})^3 \right) \right) }$

9) Rated Torque of Clutch given Torque Capacity

 $M_{\mathrm{Trated}} = rac{\mathrm{Mt_r}}{\mathrm{K_s}}$

Open Calculator

 $\mathbf{ex} \ 27647.06 \mathrm{N*mm} = \frac{47000 \mathrm{N*mm}}{1.7}$

10) Service Factor for Clutch

 $\mathbf{K}_{\mathrm{s}} = rac{\mathrm{M} \overline{\mathrm{t}_{\mathrm{r}}}}{\mathrm{M}_{\mathrm{Trated}}}$

Open Calculator

= 1.700434 = $\frac{47000\text{N*mm}}{27640\text{N*mm}}$

11) Torque Capacity of Clutch

 ${ extbf{M}} ext{t}_{ ext{r}} = ext{K}_{ ext{s}} \cdot ext{M}_{ ext{Trated}}$

Open Calculator

 $46988N*mm = 1.7 \cdot 27640N*mm$

Axial Force

12) Axial Force on Clutch from Constant Pressure Theory given Fiction Torque and Diameter

 $\mathbf{F}_{\mathrm{a}} = \mathrm{M_{\mathrm{T}}} \cdot rac{3 \cdot \left(\left(\mathrm{d_o^2}
ight) - \left(\mathrm{d_i^2}
ight)
ight)}{\mu \cdot \left(\left(\mathrm{d_o^3}
ight) - \left(\mathrm{d_i^3}
ight)
ight)}$

Open Calculator

 $15332.14 \text{N} = 238500 \text{N*mm} \cdot \frac{3 \cdot \left(\left((200 \text{mm})^2\right) - \left((100 \text{mm})^2\right)\right)}{0.2 \cdot \left(\left((200 \text{mm})^3\right) - \left((100 \text{mm})^3\right)\right)}$

13) Axial Force on Clutch from Constant Pressure Theory given Pressure Intensity and Diameter

 $extbf{P}_{
m a} = \pi \cdot ext{P}_{
m p} \cdot rac{\left(ext{d}_{
m o}^2
ight) - \left(ext{d}_{
m i}^2
ight)}{4}$

Open Calculator

ex
$$15786.5 \mathrm{N} = \pi \cdot 0.67 \mathrm{N/mm^2} \cdot \frac{\left((200 \mathrm{mm})^2 \right) - \left((100 \mathrm{mm})^2 \right)}{4}$$

14) Axial Force on Clutch from Constant Wear Theory given Friction Torque

 $\left| \mathbf{P}_{\mathrm{a}} = 4 \cdot rac{\mathrm{M}_{\mathrm{T}}}{\mu \cdot (\mathrm{d}_{\mathrm{o}} + \mathrm{d}_{\mathrm{i}})}
ight|$

Open Calculator

 $= 4 \cdot \frac{238500 \text{N*mm}}{0.2 \cdot (200 \text{mm} + 100 \text{mm})}$

15) Axial Force on Clutch from Constant Wear Theory given Permissible Intensity of

Pressure 7

 $P_{a} = \pi \cdot p_{a} \cdot d_{i} \cdot rac{d_{o} - d_{i}}{2}$

Open Calculator

ex $15865.04 ext{N} = \pi \cdot 1.01 ext{N/mm}^2 \cdot 100 ext{mm} \cdot rac{200 ext{mm} - 100 ext{mm}}{2}$

16) Axial Force on Clutch given Friction Radius

 $\left| \mathbf{F}_{\mathbf{a}} \right| \mathbf{P}_{\mathbf{a}} = \frac{\mathbf{M}_{\mathrm{T}}}{\mathbf{u} \cdot \mathbf{R}_{\mathbf{c}}}$

Open Calculator

 $= 15900 N = \frac{238500 N^* mm}{0.2 \cdot 75 mm}$

Coefficient of Friction

17) Coefficient of Friction for Clutch from Constant Pressure Theory given Diameters

 $\mu = 12 \cdot rac{ ext{M}_{ ext{T}}}{\pi \cdot ext{P}_{ ext{p}} \cdot \left(\left(ext{d}_{ ext{o}}^3
ight) - \left(ext{d}_{ ext{i}}^3
ight)
ight)}$

Open Calculator

 $\boxed{ 0.194244 = 12 \cdot \frac{238500 \text{N*mm}}{\pi \cdot 0.67 \text{N/mm}^2 \cdot \left(\left((200 \text{mm})^3 \right) - \left((100 \text{mm})^3 \right) \right) }$

18) Coefficient of Friction of Clutch from Constant Pressure Theory given Friction Torque 🗗

$$\mu = \mathrm{M_T} \cdot rac{3 \cdot \left(\left(\mathrm{d_o^2}
ight) - \left(\mathrm{d_i^2}
ight)
ight)}{\mathrm{P_a} \cdot \left(\left(\mathrm{d_o^3}
ight) - \left(\mathrm{d_i^3}
ight)
ight)}$$

Open Calculator

$$P_{a} \cdot ((d_{o}^{s}) - (d_{i}^{s}))$$

$$\underbrace{0.192857 = 238500 \text{N*mm} \cdot \frac{3 \cdot \left(\left((200 \text{mm})^2 \right) - \left((100 \text{mm})^2 \right) \right)}{15900 \text{N} \cdot \left(\left((200 \text{mm})^3 \right) - \left((100 \text{mm})^3 \right) \right)} }$$

19) Coefficient of Friction of Clutch from Constant Wear Theory

$$\mu = 8 \cdot rac{\mathrm{M_T}}{\pi \cdot \mathrm{p_a} \cdot \mathrm{d_i} \cdot \left(\left(\mathrm{d_o^2}\right) - \left(\mathrm{d_i^2}
ight)
ight)}$$

Open Calculator

$$\boxed{ 0.200441 = 8 \cdot \frac{238500 \text{N*mm}}{\pi \cdot 1.01 \text{N/mm}^2 \cdot 100 \text{mm} \cdot \left(\left(\left(200 \text{mm} \right)^2 \right) - \left(\left(100 \text{mm} \right)^2 \right) \right) }$$

20) Coefficient of Friction of Clutch from Constant Wear Theory given Axial Force

$$\mu = 4 \cdot rac{M_T}{P_a \cdot (d_o + d_i)}$$

Open Calculator

21) Coefficient of Friction of Clutch given Friction Radius

$$\mu = rac{M_T}{P_a \cdot R_f}$$

Open Calculator

$$= \frac{238500 \text{N*mm}}{15900 \text{N} \cdot 75 \text{mm}}$$

Design of Centrifugal Clutches

22) Centrifugal Force on Clutch

 $\mathbf{F}_{\mathrm{c}} = \left(\mathbf{M} \cdot \left(\mathbf{\omega}_{1}^{2}
ight) \cdot \mathbf{r}_{\mathrm{g}}
ight)$

Open Calculator 🗗

 $= 1420.133 N = (3.7 kg \cdot ((52.36 rad/s)^2) \cdot 140 mm)$

23) Friction Force on Centrifugal Clutch

 $\mathbf{F}_{\mathrm{friction}} = \mu \cdot \mathbf{M} \cdot \mathbf{r}_{\mathrm{g}} \cdot \left(\left(\omega_2^2
ight) - \left(\omega_1^2
ight)
ight)$

Open Calculator

 $\boxed{ \textbf{ex} \left[355.0333 \text{N} = 0.2 \cdot 3.7 \text{kg} \cdot 140 \text{mm} \cdot \left(\left(\left(78.54 \text{rad/s} \right)^2 \right) - \left(\left(52.36 \text{rad/s} \right)^2 \right) \right) \right] }$

24) Friction Torque on Centrifugal Clutch

 $\mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathbf{M} \cdot \mathbf{r}_{\mathrm{g}} \cdot \mathbf{r}_{\mathrm{d}} \cdot \mathbf{z}_{\mathrm{s}} \cdot \left(\left(\omega_{2}^{2}
ight) - \left(\omega_{1}^{2}
ight)
ight)$

Open Calculator

ex

 $\boxed{234322\text{N*mm} = 0.2 \cdot 3.7 \text{kg} \cdot 140 \text{mm} \cdot 165 \text{mm} \cdot 4 \cdot \left(\left(\left(78.54 \text{rad/s}\right)^2\right) - \left(\left(52.36 \text{rad/s}\right)^2\right)\right)}$

25) Spring Force in Centrifugal Clutch

 $ext{P}_{ ext{spring}} = ext{M} \cdot \left(\omega_1^2
ight) \cdot ext{r}_{ ext{g}}$

Open Calculator

 $ext{ex} \ 1420.133 ext{N} = 3.7 ext{kg} \cdot \left(\left(52.36 ext{rad/s} \right)^2
ight) \cdot 140 ext{mm}$

Design of Cone and Centrifugal Clutches 🗗

26) Axial Force on Cone Clutch from Constant Wear Theory given Permissible Pressure Intensity

$$extstyle extstyle ext$$

Open Calculator

 $ag{200} = \pi \cdot 1.01 ext{N/mm}^2 \cdot 100 ext{mm} \cdot rac{200 ext{mm} - 100 ext{mm}}{2}$

27) Axial Force on Cone Clutch from Constant Wear Theory given Pressure

$$\mathbf{F}_{\mathrm{a}} = \pi \cdot \mathrm{P}_{\mathrm{p}} \cdot rac{\left(\mathrm{d}_{\mathrm{o}}^{2}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{2}
ight)}{4}$$

Open Calculator 🗗

 $extbf{ex} \ 15786.5 ext{N} = \pi \cdot 0.67 ext{N/mm}^2 \cdot rac{\left(\left(200 ext{mm}
ight)^2
ight) - \left(\left(100 ext{mm}
ight)^2
ight)}{4}$

28) Centrifugal Force on Clutch

$$\mathbf{F}_{\mathrm{c}} = \left(\mathbf{M} \cdot \left(\omega_{1}^{2}
ight) \cdot \mathbf{r}_{\mathrm{g}}
ight)$$

Open Calculator

29) Friction Force on Centrifugal Clutch

$$\mathbf{F}_{\mathrm{friction}} = \mathbf{\mu} \cdot \mathbf{M} \cdot \mathbf{r}_{\mathrm{g}} \cdot \left(\left(\omega_2^2
ight) - \left(\omega_1^2
ight)
ight)$$

Open Calculator

 $= 355.0333 \text{N} = 0.2 \cdot 3.7 \text{kg} \cdot 140 \text{mm} \cdot \left(\left((78.54 \text{rad/s})^2 \right) - \left((52.36 \text{rad/s})^2 \right) \right)$

30) Friction Torque on Centrifugal Clutch

 $\mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathbf{M} \cdot \mathbf{r}_{\mathrm{g}} \cdot \mathbf{r}_{\mathrm{d}} \cdot \mathbf{z}_{\mathrm{s}} \cdot \left(\left(\omega_{2}^{2}
ight) - \left(\omega_{1}^{2}
ight)
ight)$

Open Calculator 🛂

ex

 $\boxed{234322\text{N*mm} = 0.2 \cdot 3.7 \text{kg} \cdot 140 \text{mm} \cdot 165 \text{mm} \cdot 4 \cdot \left(\left((78.54 \text{rad/s})^2\right) - \left((52.36 \text{rad/s})^2\right)\right)}$

31) Friction Torque on Cone Clutch from Constant Pressure Theory

 $\mathbf{M}_{\mathrm{T}} = \pi \cdot \mathbf{\mu} \cdot \mathrm{P_c} \cdot rac{\left(\mathrm{d_o^3}\right) - \left(\mathrm{d_i^3}
ight)}{12 \cdot \left(\sin(lpha)
ight)}$

Open Calculator

32) Friction Torque on Cone Clutch from Constant Pressure Theory given Axial Force

 $\mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathrm{P}_{\mathrm{m}} \cdot rac{\left(\mathrm{d}_{\mathrm{o}}^{3}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{3}
ight)}{3 \cdot \left(\sin(lpha)
ight) \cdot \left(\left(\mathrm{d}_{\mathrm{o}}^{2}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{2}
ight)
ight)}$

Open Calculator

33) Friction Torque on Cone Clutch from Constant Wear Theory given Axial Force 🗗

 $\mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathrm{P}_{\mathrm{m}} \cdot rac{\mathrm{d}_{\mathrm{o}} + \mathrm{d}_{\mathrm{i}}}{4 \cdot \sin(lpha)}$

Open Calculator

34) Friction Torque on Cone Clutch from Constant Wear Theory given Semi-Cone Angle

 $\mathbf{M}_{\mathrm{T}} = \pi \cdot \mathbf{\mu} \cdot \mathbf{p}_{\mathrm{a}} \cdot \mathbf{d}_{\mathrm{i}} \cdot \frac{\left(d_{\mathrm{o}}^{2}
ight) - \left(d_{\mathrm{i}}^{2}
ight)}{8 \cdot \sin(lpha)}$

Open Calculator 🗗

 $\boxed{ 1.1 \text{E} \hat{\ } 6\text{N*mm} = \pi \cdot 0.2 \cdot 1.01 \text{N/mm}^2 \cdot 100 \text{mm} \cdot \frac{\left((200 \text{mm})^2 \right) - \left((100 \text{mm})^2 \right)}{8 \cdot \sin(12.5°)} }$

35) Spring Force in Centrifugal Clutch

 $\mathbf{F}_{\mathrm{spring}} = \mathbf{M} \cdot \left(\omega_1^2\right) \cdot \mathbf{r}_{\mathrm{g}}$

Open Calculator

 $\mathbf{ex} \ 1420.133 \mathrm{N} = 3.7 \mathrm{kg} \cdot \left(\left(52.36 \mathrm{rad/s} \right)^2 \right) \cdot 140 \mathrm{mm}$

Design of Cone Clutches

36) Axial Force on Cone Clutch from Constant Wear Theory given Permissible Pressure Intensity

 $ext{P}_{a} = \pi \cdot ext{p}_{a} \cdot ext{d}_{i} \cdot rac{ ext{d}_{o} - ext{d}_{i}}{2}$

Open Calculator

 $ag{200} = \pi \cdot 1.01 ext{N/mm}^2 \cdot 100 ext{mm} \cdot rac{200 ext{mm} - 100 ext{mm}}{2}$

37) Axial Force on Cone Clutch from Constant Wear Theory given Pressure

 $\left| \mathbf{P}_{\mathrm{a}} = \pi \cdot \mathbf{P}_{\mathrm{p}} \cdot rac{\left(\mathrm{d}_{\mathrm{o}}^{2}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{2}
ight)}{4}
ight|$

Open Calculator

 $oxed{ex} 15786.5 \mathrm{N} = \pi \cdot 0.67 \mathrm{N/mm^2} \cdot rac{\left((200 \mathrm{mm})^2
ight) - \left((100 \mathrm{mm})^2
ight)}{4}$

38) Friction Torque on Cone Clutch from Constant Pressure Theory

 $ext{M}_{ ext{T}} = \pi \cdot \mu \cdot ext{P}_{ ext{c}} \cdot rac{\left(ext{d}_{ ext{o}}^3
ight) - \left(ext{d}_{ ext{i}}^3
ight)}{12 \cdot \left(\sin(lpha)
ight)}$

Open Calculator 🚰

39) Friction Torque on Cone Clutch from Constant Pressure Theory given Axial Force

 $\mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathrm{P}_{\mathrm{m}} \cdot rac{\left(\mathrm{d}_{\mathrm{o}}^{3}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{3}
ight)}{3 \cdot \left(\sin(lpha)
ight) \cdot \left(\left(\mathrm{d}_{\mathrm{o}}^{2}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{2}
ight)
ight)}$

Open Calculator

40) Friction Torque on Cone Clutch from Constant Wear Theory given Axial Force

 $M_{\mathrm{T}} = \mu \cdot \mathrm{P_m} \cdot rac{\mathrm{d_o} + \mathrm{d_i}}{4 \cdot \sin(lpha)}$

Open Calculator

41) Friction Torque on Cone Clutch from Constant Wear Theory given Semi-Cone Angle

 $\mathbf{M}_{\mathrm{T}} = \pi \cdot \mathbf{\mu} \cdot \mathbf{p}_{\mathrm{a}} \cdot \mathbf{d}_{\mathrm{i}} \cdot rac{\left(d_{\mathrm{o}}^{2}
ight) - \left(d_{\mathrm{i}}^{2}
ight)}{8 \cdot \sin(lpha)}$

Open Calculator

 $= 1.1 \text{E}^6 \text{N*mm} = \pi \cdot 0.2 \cdot 1.01 \text{N/mm}^2 \cdot 100 \text{mm} \cdot \frac{\left((200 \text{mm})^2 \right) - \left((100 \text{mm})^2 \right)}{8 \cdot \sin(12.5°)}$

Design of Multiple Disk Clutches

42) Friction Torque on Multiple Disk Clutch from Constant Pressure Theory

 $\mathbf{M}_{\mathrm{T}} = \mu \cdot \mathrm{P}_{\mathrm{m}} \cdot \mathrm{z} \cdot rac{\left(\mathrm{d}_{\mathrm{o}}^{3}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{3}
ight)}{3 \cdot \left(\left(\mathrm{d}_{\mathrm{o}}^{2}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{2}
ight)
ight)}$

Open Calculator

43) Friction Torque on Multiple Disk Clutch from Constant Wear Theory

 $\mathbf{M}_{\mathrm{T}} = \mu \cdot P_{\mathrm{m}} \cdot \mathbf{z} \cdot \frac{d_{\mathsf{o}} + d_{\mathrm{i}}}{4}$

Open Calculator

 $229875 ext{N*mm} = 0.2 \cdot 3065 ext{N} \cdot 5 \cdot \frac{200 ext{mm} + 100 ext{mm}}{4}$

Frictional Torque

44) Friction Torque on Clutch from Constant Pressure Theory given Axial Force

 $\mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathrm{P_a} \cdot rac{\left(\mathrm{d_o^3}\right) - \left(\mathrm{d_i^3}
ight)}{3 \cdot \left(\left(\mathrm{d_o^2}\right) - \left(\mathrm{d_i^2}
ight)
ight)}$

Open Calculator

 $247333.3\text{N*mm} = 0.2 \cdot 15900\text{N} \cdot \frac{\left((200\text{mm})^3 \right) - \left((100\text{mm})^3 \right)}{3 \cdot \left(\left((200\text{mm})^2 \right) - \left((100\text{mm})^2 \right) \right)}$

45) Friction Torque on Clutch from Constant Pressure Theory given Pressure

 $\mathbf{M}_{\mathrm{T}} = \pi \cdot \mu \cdot \mathrm{P}_{\mathrm{p}} \cdot rac{\left(\mathrm{d}_{\mathrm{o}}^{3}
ight) - \left(\mathrm{d}_{\mathrm{i}}^{3}
ight)}{12}$

Open Calculator

 $\boxed{ 245567.8 \text{N*mm} = \pi \cdot 0.2 \cdot 0.67 \text{N/mm}^2 \cdot \frac{\left(\left(200 \text{mm} \right)^3 \right) - \left(\left(100 \text{mm} \right)^3 \right)}{12} }$

46) Friction Torque on Clutch from Constant Wear Theory given Diameters

 $\mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathrm{P_a} \cdot rac{\mathrm{d_o} + \mathrm{d_i}}{4}$

Open Calculator

 $ext{ex} \ 238500 ext{N*mm} = 0.2 \cdot 15900 ext{N} \cdot rac{200 ext{mm} + 100 ext{mm}}{4}$

47) Friction Torque on Clutch given Friction Radius

 $\mathbf{K} egin{bmatrix} \mathbf{M}_{\mathrm{T}} = \mathbf{\mu} \cdot \mathbf{P}_{\mathrm{a}} \cdot \mathbf{R}_{\mathrm{f}} \end{bmatrix}$

Open Calculator

 $238500N*mm = 0.2 \cdot 15900N \cdot 75mm$

48) Frictional Torque on Clutch from Constant Wear Theory given Diameters 🚰

fx $M_{\mathrm{T}} = \pi \cdot \mu \cdot \mathrm{p_a} \cdot \mathrm{d_i} \cdot rac{\left(\mathrm{d_o^2}\right) - \left(\mathrm{d_i^2}\right)}{\mathrm{g}}$

Open Calculator

Variables Used

- **d**_i Inner Diameter of Clutch (Millimeter)
- do Outer Diameter of Clutch (Millimeter)
- **F**_c Centrifugal Force on Clutch (Newton)
- F_{friction} Force of Friction on Clutch (Newton)
- K_s Service Factor for Clutch
- M Mass of Clutch (Kilogram)
- M_T Friction Torque on Clutch (Newton Millimeter)
- M_{Trated} Rated Torque of Friction Clutch (Newton Millimeter)
- Mt_r Torque Capacity for Clutch (Newton Millimeter)
- **p**_a Permissible Intensity of Pressure in Clutch (Newton per Square Millimeter)
- Pa Axial Force for Clutch (Newton)
- Pc Constant Pressure between Clutch Plates (Newton per Square Millimeter)
- P_m Operating Force for Clutch (Newton)
- Pp Pressure between Clutch Plates (Newton per Square Millimeter)
- P_{spring} Spring Force in Centrifugal Clutch (Newton)
- r_d Radius of Clutch Drum (Millimeter)
- Rf Friction Radius of Clutch (Millimeter)
- r_q Radius of CG Point of Clutch (Millimeter)
- Z Pairs of Contacting Surface of Clutch
- Z_S Number of Shoes in Centrifugal Clutch
- α Semi-Cone Angle of Clutch (Degree)
- µ Coefficient of Friction Clutch
- ω₁ Speed at which Engagement Starts in Clutch (Radian per Second)
- ω₂ Running Speed of Clutch (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sin, sin(Angle)

 Trigonometric sine function
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²)
 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s)
 Angular Velocity Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion

Check other formula lists

- Design against Fluctuating Load Formulas
- Design of Bevel Gear Formulas
- Design of Chain Drives Formulas
- Design of Cotter Joint Formulas
- Design of Coupling Formulas
- Design of Flywheel Formulas
- Design of Friction Clutches Formulas
- Design of Helical Gears Formulas

- Design of Keys Formulas
- Design of Knuckle Joint Formulas
- Design of Lever Formulas
- Design of Pressure Vessels Formulas
- Design of Shafts Formulas
- Design of Threaded Fasteners Formulas
- Power Screws Formulas
- Threaded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/18/2023 | 3:03:04 AM UTC

Please leave your feedback here...

