Elementary Flows Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Elementary Flows Formulas

Elementary Flows ©

Doublet Flow

1) Stream Function for 2-D Doublet Flow
$\mathrm{fx} \psi=\frac{\kappa \cdot \sin (\theta)}{2 \cdot \pi \cdot \mathrm{r}}$
Open Calculator
ex $38.73372 \mathrm{~m}^{2} / \mathrm{s}=\frac{3400 \mathrm{~m}^{3} / \mathrm{s} \cdot \sin (0.7 \mathrm{rad})}{2 \cdot \pi \cdot 9 \mathrm{~m}}$
2) Velocity Potential for 2-D Doublet Flow
$\mathrm{fx} \phi=\frac{\kappa}{2 \cdot \pi \cdot \mathrm{r}} \cdot \cos (\theta)$
Open Calculator
ex $45.98629 \mathrm{~m}^{2} / \mathrm{s}=\frac{3400 \mathrm{~m}^{3} / \mathrm{s}}{2 \cdot \pi \cdot 9 \mathrm{~m}} \cdot \cos (0.7 \mathrm{rad})$

Source Flow

3) Radial Velocity for 2-D Incompressible Source Flow
$f \mathrm{f} \mathrm{V}_{\mathrm{r}}=\frac{\Lambda}{2 \cdot \pi \cdot \mathrm{r}}$
ex $2.36964 \mathrm{~m} / \mathrm{s}=\frac{134 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot \pi \cdot 9 \mathrm{~m}}$
4) Source Strength for 2-D Incompressible Source Flow
$\mathrm{fx} \Lambda=2 \cdot \pi \cdot \mathrm{r} \cdot \mathrm{V}_{\mathrm{r}}$
ex $133.4549 \mathrm{~m}^{2} / \mathrm{s}=2 \cdot \pi \cdot 9 \mathrm{~m} \cdot 2.36 \mathrm{~m} / \mathrm{s}$
5) Stagnation Streamline Equation for Flow over Semi-Infinite Body
$f \times \psi=0.5 \cdot \Lambda$
Open Calculator
ex $67 \mathrm{~m}^{2} / \mathrm{s}=0.5 \cdot 134 \mathrm{~m}^{2} / \mathrm{s}$
6) Stream Function for 2-D Incompressible Source Flow
$f x \psi_{\text {source }}=\frac{\Lambda}{2 \cdot \pi} \cdot \theta$
Open Calculator
ex $14.92873 \mathrm{~m}^{2} / \mathrm{s}=\frac{134 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot \pi} \cdot 0.7 \mathrm{rad}$
7) Stream Function for Flow over Rankine Oval
$f \mathrm{x} \psi_{\mathrm{r}}=\mathrm{V}_{\infty} \cdot \mathrm{r} \cdot \sin (\theta)+\left(\frac{\Lambda}{2 \cdot \pi}\right) \cdot\left(\theta_{1}-\theta_{2}\right)$
Open Calculator

ex

$-48.200111 \mathrm{~m}^{2} / \mathrm{s}=6.4 \mathrm{~m} / \mathrm{s} \cdot 9 \mathrm{~m} \cdot \sin (0.7 \mathrm{rad})+\left(\frac{134 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot \pi}\right) \cdot(10 \mathrm{rad}-14 \mathrm{rad})$
8) Stream Function for Semi-Infinite Body
$\mathrm{fx} \psi=\mathrm{V}_{\infty} \cdot \mathrm{r} \cdot \sin (\theta)+\frac{\Lambda}{2 \cdot \pi} \cdot \theta$
Open Calculator
ex $52.03567 \mathrm{~m}^{2} / \mathrm{s}=6.4 \mathrm{~m} / \mathrm{s} \cdot 9 \mathrm{~m} \cdot \sin (0.7 \mathrm{rad})+\frac{134 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot \pi} \cdot 0.7 \mathrm{rad}$
9) Velocity Potential for 2-D Source Flow
$\mathrm{f} \mathbf{x} \phi=\frac{\Lambda}{2 \cdot \pi} \cdot \ln (\mathrm{r})$
Open Calculator
ex $46.85969 \mathrm{~m}^{2} / \mathrm{s}=\frac{134 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot \pi} \cdot \ln (9 \mathrm{~m})$

Uniform Flow

10) Stream Function for Uniform Incompressible Flow
$f x \psi=V_{\infty} \cdot y$
Open Calculator
ex $37.12 \mathrm{~m}^{2} / \mathrm{s}=6.4 \mathrm{~m} / \mathrm{s} \cdot 5.8 \mathrm{~m}$
11) Stream Function for Uniform Incompressible Flow in Polar Coordinates
$\mathrm{fx} \psi=\mathrm{V}_{\infty} \cdot \mathrm{r} \cdot \sin (\theta)$
ex $37.10694 \mathrm{~m}^{2} / \mathrm{s}=6.4 \mathrm{~m} / \mathrm{s} \cdot 9 \mathrm{~m} \cdot \sin (0.7 \mathrm{rad})$
12) Velocity Potential for Uniform Incompressible Flow
$\mathrm{fx} \phi=\mathrm{V}_{\infty} \cdot \mathrm{x}$
Open Calculator
ex $37.248 \mathrm{~m}^{2} / \mathrm{s}=6.4 \mathrm{~m} / \mathrm{s} \cdot 5.82 \mathrm{~m}$
13) Velocity Potential for Uniform Incompressible Flow in Polar Coordinates
$\mathrm{fx} \phi=\mathrm{V}_{\infty} \cdot \mathrm{r} \cdot \cos (\theta)$
Open Calculator
ex $44.05491 \mathrm{~m}^{2} / \mathrm{s}=6.4 \mathrm{~m} / \mathrm{s} \cdot 9 \mathrm{~m} \cdot \cos (0.7 \mathrm{rad})$

Vortex Flow ©

14) Stream Function for 2-D Vortex Flow
$\mathrm{fx} \psi_{\text {vortex }}=\frac{\gamma}{2 \cdot \pi} \cdot \ln (\mathrm{r})$
ex $-146.873644 m^{2} / s=\frac{-420 m^{2} / s}{2 \cdot \pi} \cdot \ln (9 m)$
15) Tangential Velocity for 2-D Vortex Flow
$\mathrm{fx} \mathrm{V}_{\theta}=-\frac{\gamma}{2 \cdot \pi \cdot \mathrm{r}}$
Open Calculator
ex $7.427231 \mathrm{~m} / \mathrm{s}=-\frac{-420 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot \pi \cdot 9 \mathrm{~m}}$
16) Velocity Potential for 2-D Vortex Flow
$\mathrm{fx} \phi=-\left(\frac{\gamma}{2 \cdot \pi}\right) \cdot \theta$
ex $46.79155 \mathrm{~m}^{2} / \mathrm{s}=-\left(\frac{-420 \mathrm{~m}^{2} / \mathrm{s}}{2 \cdot \pi}\right) \cdot 0.7 \mathrm{rad}$

Variables Used

- r Radial Coordinate (Meter)
- \mathbf{V}_{∞} Freestream Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{r}}$ Radial Velocity (Meter per Second)
- $\mathbf{V}_{\boldsymbol{\theta}}$ Tangential Velocity (Meter per Second)
- X Distance on X-Axis (Meter)
- y Distance on Y-Axis (Meter)
- Y Vortex Strength (Square Meter per Second)
- $\boldsymbol{\theta}$ Polar Angle (Radian)
- θ_{1} Polar Angle from Source (Radian)
- $\boldsymbol{\theta}_{\mathbf{2}}$ Polar Angle from Sink (Radian)
- K Doublet Strength (Cubic Meter per Second)
- Λ Source Strength (Square Meter per Second)
- $\boldsymbol{\phi}$ Velocity Potential (Square Meter per Second)
- $\boldsymbol{\Psi}$ Stream Function (Square Meter per Second)
- Ψ_{r} Rankine Oval Stream Function (Square Meter per Second)
- $\Psi_{\text {source }}$ Source Stream Function (Square Meter per Second)
- $\Psi_{\text {vortex }}$ Vortex Stream Function (Square Meter per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Function: $\boldsymbol{\operatorname { s i n }}, \sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion
- Measurement: Velocity Potential in Square Meter per Second ($\mathrm{m}^{2} / \mathrm{s}$) Velocity Potential Unit Conversion

Check other formula lists

- Elementary Flows Formulas
- Flow and Lift Distribution Formulas
- Flow over Airfoils and Wings Formulas
- Lift Distribution Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

