

Vertical Tail Contribution Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 24 Vertical Tail Contribution Formulas

Vertical Tail Contribution

1) Moment Produced by Vertical Tail for given Lift Curve Slope

$$\mathbf{K} \left[\mathbf{N}_{\mathrm{v}} = oldsymbol{l}_{\mathrm{v}} \cdot \mathbf{C}_{\mathrm{v}} \cdot (eta + \sigma) \cdot \mathbf{Q}_{\mathrm{v}} \cdot \mathbf{S}_{\mathrm{v}}
ight]$$

Open Calculator 🗗

 $\mathbf{ex} = 5.4054 \mathrm{N^*m} = 1.2 \mathrm{m} \cdot 0.7 \mathrm{rad^{-1}} \cdot (0.05 \mathrm{rad} + 0.067 \mathrm{rad}) \cdot 11 \mathrm{Pa} \cdot 5 \mathrm{m^2}$

2) Moment Produced by Vertical Tail for given Moment Coefficient

$$N_{v} = C_{n} \cdot Q_{w} \cdot b \cdot S$$

Open Calculator

 $= 5.398008N*m = 1.4 \cdot 0.66Pa \cdot 1.15m \cdot 5.08m^{2}$

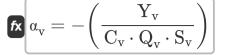
3) Moment Produced by Vertical Tail for given Side Force

$$\mathbf{f} \mathbf{x} egin{bmatrix} \mathbf{N}_{\mathrm{v}} = -(oldsymbol{l}_{\mathrm{v}} \cdot \mathbf{Y}_{\mathrm{v}}) \end{bmatrix}$$

Open Calculator

 $[5.082N*m = -(1.2m \cdot -4.235N)]$

4) Vertical Tail Angle of Attack


fx
$$lpha_{
m v} = \sigma + eta$$

Open Calculator

0.117 rad = 0.067 rad + 0.05 rad

5) Vertical Tail Angle of Attack for given Vertical Tail Side Force

Open Calculator 🗗

$$egin{aligned} \mathbf{ex} \ 0.11 \mathrm{rad} = -igg(rac{-4.235 \mathrm{N}}{0.7 \mathrm{rad}^{-1} \cdot 11 \mathrm{Pa} \cdot 5 \mathrm{m}^2}igg) \end{aligned}$$

6) Vertical Tail Area for given Moment

$$\mathbf{f}_{\mathbf{v}} egin{aligned} \mathbf{f}_{\mathbf{v}} & \mathbf{N}_{\mathbf{v}} \ & oldsymbol{l}_{\mathbf{v}} \cdot \mathbf{C}_{\mathbf{v}} \cdot (\mathbf{eta} + \mathbf{\sigma}) \cdot \mathbf{Q}_{\mathbf{v}} \end{aligned}$$

Open Calculator

$$oxed{4.995005 \mathrm{m}^{2} = rac{5.4 \mathrm{N^{*}m}}{1.2 \mathrm{m} \cdot 0.7 \mathrm{rad^{-1}} \cdot (0.05 \mathrm{rad} + 0.067 \mathrm{rad}) \cdot 11 \mathrm{Pa}}}$$

7) Vertical Tail Area for given Vertical Tail Side Force

$$\mathbf{S_v} = -rac{\mathbf{Y_v}}{\mathbf{C_v} \cdot \mathbf{lpha_v} \cdot \mathbf{Q_v}}$$

Open Calculator 🚰

$$oxed{4.700855 m^2 = -rac{-4.235 N}{0.7 rad^{-1} \cdot 0.117 rad \cdot 11 Pa}}$$

8) Vertical tail area for given vertical tail volume ratio

$$\left[\mathbf{S}_{\mathrm{v}} = \mathbf{V}_{\mathrm{v}} \cdot \mathbf{S} \cdot rac{\mathrm{b}}{oldsymbol{l}_{\mathrm{v}}}
ight]$$

Open Calculator

$$4.9657 ext{m}^2 = 1.02 \cdot 5.08 ext{m}^2 \cdot rac{1.15 ext{m}}{1.2 ext{m}}$$

9) Vertical Tail Area for given Yawing Moment Coefficient

 $\left. \mathbf{S}_{\mathrm{v}} = \mathrm{C_n} \cdot rac{\mathrm{S} \cdot \mathrm{b} \cdot \mathrm{Q_w}}{oldsymbol{l_{\mathrm{v}}} \cdot \mathrm{Q_v} \cdot \mathrm{C_v} \cdot (eta + \sigma)}
ight|$

Open Calculator

10) Vertical Tail Dynamic Pressure for given Vertical Tail Side Force

 $\left|\mathbf{R} \left| \mathbf{Q}_{\mathrm{v}} = - \left(rac{\mathbf{Y}_{\mathrm{v}}}{\mathbf{C}_{\mathrm{v}} \cdot \mathbf{a}_{\mathrm{v}} \cdot \mathbf{S}_{\mathrm{v}}}
ight)
ight|$

Open Calculator

 $extbf{ex} \left| 10.34188 ext{Pa} = - \left(rac{ ext{-}4.235 ext{N}}{0.7 ext{rad}^{ ext{-}1} \cdot 0.117 ext{rad} \cdot 5 ext{m}^2}
ight)
ight|$

11) Vertical Tail Efficiency

 $\eta_{
m v}=rac{Q_{
m v}}{Q_{
m w}}$ ex $16.66667=rac{11Pa}{0.66Pa}$

Open Calculator

12) Vertical Tail Efficiency for given Yawing Moment Coefficient

$$\eta_{
m v} = rac{{
m C_n}}{{
m V_v \cdot C_v \cdot (eta + \sigma)}}$$

Open Calculator 🗗

13) Vertical Tail Lift Curve Slope

 $\left[\mathbf{C}_{\mathrm{v}} = - \left(rac{\mathbf{Y}_{\mathrm{v}}}{\mathbf{lpha}_{\mathrm{v}} \cdot \mathbf{Q}_{\mathrm{v}} \cdot \mathbf{S}_{\mathrm{v}}}
ight)
ight]$

Open Calculator 🗗

 $oxed{ex} \left[0.65812 \mathrm{rad}^{\scriptscriptstyle{-1}} = - \Bigg(rac{-4.235 \mathrm{N}}{0.117 \mathrm{rad} \cdot 11 \mathrm{Pa} \cdot 5 \mathrm{m}^2} \Bigg)
ight]$

14) Vertical Tail Lift Curve Slope for Given Moment

 $extbf{C}_{ ext{v}} = rac{ ext{N}_{ ext{v}}}{m{l}_{ ext{v}} \cdot (m{eta} + m{\sigma}) \cdot ext{Q}_{ ext{v}} \cdot ext{S}_{ ext{v}}}$

Open Calculator

 $oxed{ex} 0.699301 \mathrm{rad^{ ext{--}1}} = rac{5.4 \mathrm{N^*m}}{1.2 \mathrm{m} \cdot (0.05 \mathrm{rad} + 0.067 \mathrm{rad}) \cdot 11 \mathrm{Pa} \cdot 5 \mathrm{m^2}}$

15) Vertical Tail Lift Curve Slope for given Vertical Tail Efficiency

 $\mathbf{K} \ \mathrm{C_v} = rac{\mathrm{C_n}}{\mathrm{V_v} \cdot \mathrm{\eta_v} \cdot (eta + \sigma)}$

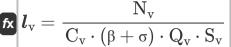
Open Calculator 🚰

 $0.704153 {\rm rad}^{-1} = \frac{1.4}{1.02 \cdot 16.66 \cdot (0.05 {\rm rad} + 0.067 {\rm rad})}$ $\textbf{16) Vertical Tail Lift Curve Slope for given Yawing Moment Coefficient} \quad \textbf{C}$

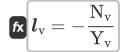
_ Q

 $\mathbf{C}_{\mathrm{v}} = \mathrm{C}_{\mathrm{n}} \cdot \mathrm{S} \cdot \mathrm{b} \cdot rac{\mathrm{Q}_{\mathrm{w}}}{oldsymbol{l}_{\mathrm{v}} \cdot \mathrm{S}_{\mathrm{v}} \cdot \mathrm{Q}_{\mathrm{v}} \cdot (eta + \sigma)}$

Open Calculator 🗗

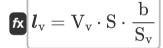

ex

 $0.699043 ext{rad}^{_{-1}} = 1.4 \cdot 5.08 ext{m}^2 \cdot 1.15 ext{m} \cdot rac{0.66 ext{Pa}}{1.2 ext{m} \cdot 5 ext{m}^2 \cdot 11 ext{Pa} \cdot \left(0.05 ext{rad} + 0.067 ext{rad}
ight)}$


17) Vertical Tail Moment Arm for given Lift Curve Slope 🗗

Open Calculator

- (P | 3) & BY


18) Vertical Tail Moment Arm for given Side Force

Open Calculator 🗗

$$\boxed{1.275089 \text{m} = -\frac{5.4 \text{N*m}}{-4.235 \text{N}}}$$

19) Vertical Tail Moment Arm for given Vertical Tail Volume Ratio

Open Calculator 🗗

$$\boxed{ 1.191768 \text{m} = 1.02 \cdot 5.08 \text{m}^2 \cdot \frac{1.15 \text{m}}{5 \text{m}^2} }$$

20) Vertical Tail Moment Arm for Given Yawing Moment Coefficient

$$m{l}_{
m v} = rac{
m C_n}{
m S_v \cdot Q_v \cdot C_v \cdot rac{eta + \sigma}{
m S \cdot b \cdot Q_w}}$$

Open Calculator 🗗

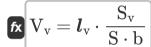
$$= \frac{1.4}{5 m^2 \cdot 11 Pa \cdot 0.7 rad^{-1} \cdot \frac{0.05 rad + 0.067 rad}{5.08 m^2 \cdot 1.15 m \cdot 0.66 Pa} }$$


21) Vertical Tail Side Force

fx $Y_v = -C_v \cdot lpha_v \cdot S_v \cdot Q_v$

Open Calculator

 $extstyle{\textbf{ex}}$ $-4.5045 ext{N} = -0.7 ext{rad}^{-_1} \cdot 0.117 ext{rad} \cdot 5 ext{m}^2 \cdot 11 ext{Pa}$


22) Vertical Tail Side Force for Given Moment

Open Calculator 🗗

 $\boxed{ -4.5 \mathrm{N} = - \bigg(\frac{5.4 \mathrm{N^* m}}{1.2 \mathrm{m}} \bigg) }$

23) Vertical tail volume ratio

Open Calculator

ex $1.027046 = 1.2 \mathrm{m} \cdot rac{5 \mathrm{m}^2}{5.08 \mathrm{m}^2 \cdot 1.15 \mathrm{m}}$

24) Vertical Tail Volume Ratio for given Yawing Moment Coefficient

$$V_{
m v} = rac{{
m C}_{
m n}}{\eta_{
m v} \cdot {
m C}_{
m v} \cdot (eta + \sigma)}$$

Open Calculator

Variables Used

- **b** Wingspan (Meter)
- Cn Yawing Moment Coefficient
- C_v Vertical Tail Lift Curve Slope (1 per Radian)
- N_v Vertical Tail Moment (Newton Meter)
- Q_v Vertical Tail Dynamic Pressure (Pascal)
- **Q**_w Wing Dynamic Pressure (Pascal)
- S Reference Area (Square Meter)
- S_v Vertical Tail Area (Square Meter)
- V_v Vertical Tail Volume Ratio
- Y_v Vertical Tail Side Force (Newton)
- α_V Vertical Tail Angle of Attack (Radian)
- β Sideslip Angle (Radian)
- η_V Vertical Tail Efficiency
- σ Sidewash Angle (Radian)
- **l**_v Vertical Tail Moment Arm (*Meter*)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Pressure in Pascal (Pa)
 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Radian (rad)
 Angle Unit Conversion
- Measurement: Moment of Force in Newton Meter (N*m)
 Moment of Force Unit Conversion
- Measurement: Reciprocal Angle in 1 per Radian (rad⁻¹)

 Reciprocal Angle Unit Conversion

Check other formula lists

- Aerodynamic Parameters
 Formulas
- Vertical Tail Contribution Formulas
- Wing-Tail Interaction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/20/2024 | 8:00:36 AM UTC

Please leave your feedback here...

