

Design of Rapid Mix Basin and Flocculation Basin Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Design of Rapid Mix Basin and Flocculation Basin Formulas

Design of Rapid Mix Basin and Flocculation Basin

1) Dynamic Viscosity given Mean Velocity Gradient

$$\mu_{
m viscosity} = \left(rac{
m P}{\left(
m G
ight)^2 \cdot
m V}
ight)$$

Open Calculator 🖒

ex
$$833.3333 ext{P} = \left(rac{3 ext{kJ/s}}{\left(2 ext{s}^{-1}
ight)^2 \cdot 9 ext{m}^3}
ight)$$

2) Dynamic Viscosity given Power Requirement for Flocculation

$$\mu_{
m viscosity} = \left(rac{
m P}{\left(
m G
ight)^2 \cdot
m V}
ight)$$

Open Calculator 🗗

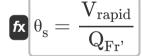
$$ext{ex} \left[833.3333 ext{P} = \left(rac{3 ext{kJ/s}}{\left(2 ext{s}^{ ext{-}1}
ight)^2 \cdot 9 ext{m}^3}
ight)
ight]$$

3) Dynamic Viscosity given Power Requirement for Rapid Mixing Operations

 $\mu_{
m viscosity} = \left(rac{
m P}{\left(
m G
ight)^2 \cdot
m V}
ight)$

Open Calculator

 $extbf{ex} 833.3333 ext{P} = \left(rac{3 ext{kJ/s}}{(2 ext{s}^{-1})^2 \cdot 9 ext{m}^3}
ight)$


4) Flow Rate of Secondary Effluent given Volume of Flocculation Basin

Open Calculator 🗗

 $ext{ex} 0.54 ext{m}^3/ ext{s} = rac{9 ext{m}^3 \cdot 0.30}{5 ext{s}}$

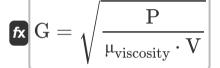
5) Hydraulic Retention Time given Volume of Rapid Mix Basin



Open Calculator 🗗

 $ex \ 7s = \frac{196m^{_3}}{28m^{_3}/s}$

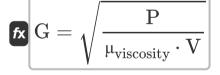
6) Mean Velocity Gradient given Power Requirement



Open Calculator

$$\mathbf{G} = \sqrt{rac{P}{\mu_{viscosity} \cdot V}}$$

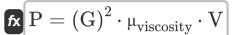
$$= 2.000004 s^{_{-1}} = \sqrt{\frac{3 k J/s}{833.33 P \cdot 9 m^{_{3}}}}$$


7) Mean Velocity Gradient given Power Requirement for Flocculation

Open Calculator 2

$$ext{ex} \ 2.000004 ext{s}^{ ext{-1}} = \sqrt{rac{3 ext{kJ/s}}{833.33 ext{P} \cdot 9 ext{m}^3}}$$

8) Mean Velocity Gradient given Power Requirement for Rapid Mixing Operations



Open Calculator 2

$$ext{ex} \; 2.000004 ext{s}^{ ext{-}1} = \sqrt{rac{3 ext{kJ/s}}{833.33 ext{P} \cdot 9 ext{m}^3}}$$

9) Power Requirement for Flocculation in Direct Filtration Process

Open Calculator 🗗

 $= 2.999988 kJ/s = (2s^{_{-1}})^2 \cdot 833.33 P \cdot 9m^{_3}$

10) Power Requirement for Rapid Mixing Operations in Wastewater Treatment

 $P = (G)^2 \cdot \mu_{viscositv} \cdot V$

Open Calculator

 $ext{ex} \left[2.999988 ext{kJ/s} = \left(2 ext{s}^{ ext{-}1}
ight)^2 \cdot 833.33 ext{P} \cdot 9 ext{m}^3
ight]$

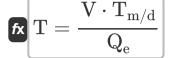
11) Power Requirement given Mean Velocity Gradient

 $\overline{P} = (G)^2 \cdot \mu_{
m viscosity} \cdot V$

Open Calculator

 $(2.999988 \mathrm{kJ/s} = (2 \mathrm{s}^{-1})^2 \cdot 833.33 \mathrm{P} \cdot 9 \mathrm{m}^3$

12) Required Volume of Flocculation Basin

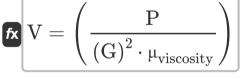

fx $V = rac{T \cdot Q_e}{T_{m/d}}$

Open Calculator

 $9 ext{m}^3 = rac{5 ext{s} \cdot 0.54 ext{m}^3/ ext{s}}{0.30}$

13) Retention Time given Volume of Flocculation Basin

Open Calculator 🗗


14) Time in Minutes Per Day given Volume of Flocculation Basin

 $\left|\mathbf{T}_{\mathrm{m/d}} = rac{\mathbf{T} \cdot \mathbf{Q}_{\mathrm{e}}}{V}
ight|$

Open Calculator 🗗

$$0.3 = rac{5 ext{s} \cdot 0.54 ext{m}^3/ ext{s}}{9 ext{m}^3}$$

15) Volume of Flocculation Basin given Power Requirement for Flocculation

Open Calculator

$$oxed{ex} 9.000036 \mathrm{m}^{_3} = \left(rac{3 \mathrm{kJ/s}}{\left(2 \mathrm{s}^{_{-1}}
ight)^2 \cdot 833.33 \mathrm{P}}
ight)$$

16) Volume of Mixing Tank given Mean Velocity Gradient

 $V = \left(rac{\mathrm{P}}{\left(\mathrm{G}
ight)^2 \cdot \mu_{\mathrm{viscositv}}}
ight)$

Open Calculator

 $ext{ex} \ 9.000036 ext{m}^{_3} = \left(rac{3 ext{kJ/s}}{\left(2 ext{s}^{_{-1}}
ight)^2 \cdot 833.33 ext{P}}
ight)$

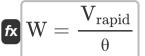
17) Volume of Mixing Tank given Power Requirement for Rapid Mixing Operations

 $V = \left(rac{P}{\left(G
ight)^2 \cdot \mu_{
m viscositv}}
ight)$

Open Calculator 🖒

 $oxed{egin{aligned} \mathbf{ex} 9.000036 \mathrm{m}^{_{3}} = \left(rac{3 \mathrm{kJ/s}}{\left(2 \mathrm{s}^{_{-1}}
ight)^{2} \cdot 833.33 \mathrm{P}}
ight)} \end{aligned}}$

18) Volume of Rapid Mix Basin


fx $V_{
m rapid} = heta \cdot W$

Open Calculator

19) Wastewater Flow given Volume of Rapid Mix Basin 🗲

Open Calculator

 $\boxed{\text{ex}} \ 28 \text{m}^{\scriptscriptstyle 3}/\text{s} = \frac{196 \text{m}^{\scriptscriptstyle 3}}{}$

Variables Used

- **G** Mean Velocity Gradient (1 Per Second)
- P Power Requirement (Kilojoule per Second)
- Q Flow Rate of Secondary Effluent (Cubic Meter per Second)
- QFr Francis Discharge with Suppressed End (Cubic Meter per Second)
- T Retention Time (Second)
- T_{m/d} Time in Min Per Day
- V Volume of Tank (Cubic Meter)
- V_{rapid} Volume of Rapid Mix Basin (Cubic Meter)
- W Waste Water Flow (Cubic Meter per Second)
- θ Hydraulic Retention Time (Second)
- θ_s Hydraulic Retention Time in Seconds (Second)
- µ_{viscosity} Dynamic Viscosity (Poise)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Volume in Cubic Meter (m³)

 Volume Unit Conversion
- Measurement: Power in Kilojoule per Second (kJ/s)
 Power Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)
 Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: First Order Reaction Rate Constant in 1 Per Second (s⁻¹)

 First Order Reaction Rate Constant Unit Conversion

Check other formula lists

- for Wastewater Disinfection Formulas [7
- **Design of a Circular Settling Tank** Formulas
- Design of a Plastic Media Trickling Filter Formulas
- Design of a Solid Bowl Centrifuge for Sludge Dewatering Formulas
- · Design of an Aerated Grit Chamber Formulas
- Design of an Aerobic Digester Formulas
- Design of an Anaerobic Digester Formulas

- Design of a Chlorination System Design of Rapid Mix Basin and Flocculation Basin Formulas [4]
 - Design of Trickling Filter using NRC Equations Formulas 💪
 - Disposing of the Sewage Effluents Formulas
 - Estimating the Design Sewage Discharge Formulas
 - Noise Pollution Formulas
 - Population Forecast Method Formulas 6
 - Sanitary System Sewer Design Formulas C
 - Sizing a Polymer Dilution or Feed System Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/12/2024 | 6:17:14 AM UTC

Please leave your feedback here...

